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We develop and test spectral Galerkin schemes to solve the coupled Orr–Sommerfeld and
induction equations for parallel, incompressible MHD in free-surface and fixed-boundary
geometries. The schemes’ discrete bases consist of Legendre internal shape functions, sup-
plemented with nodal shape functions for the weak imposition of the stress and insulating
boundary conditions. The orthogonality properties of the basis polynomials solve the
matrix-coefficient growth problem, and eigenvalue–eigenfunction pairs can be computed
stably at spectral orders at least as large as p ¼ 3000 with p-independent roundoff error.
Accuracy is limited instead by roundoff sensitivity due to non-normality of the stability
operators at large hydrodynamic and/or magnetic Reynolds numbers (Re;Rm J 4� 104).
In problems with Hartmann velocity and magnetic-field profiles we employ suitable Gauss
quadrature rules to evaluate the associated exponentially weighted sesquilinear forms
without error. An alternative approach, which involves approximating the forms by means
of Legendre–Gauss–Lobatto quadrature at the 2p� 1 precision level, is found to yield equal
eigenvalues within roundoff error. As a consistency check, we compare modal growth rates
to energy growth rates in nonlinear simulations and record relative discrepancy smaller
than 10�5 for the least stable mode in free-surface flow at Re ¼ 3� 104. Moreover, we con-
firm that the computed normal modes satisfy an energy conservation law for free-surface
MHD with error smaller than 10�6. The critical Reynolds number in free-surface MHD is
found to be sensitive to the magnetic Prandtl number Pm, even at the Pm ¼ Oð10�5Þ regime
of liquid metals.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The Orr–Sommerfeld (OS) and induction equations, Eqs. (2.1), govern the linear stability of temporal normal modes in
incompressible, parallel magnetohydrodynamics (MHD). These equations have mainly been applied to study the stability
of flows with fixed domain boundaries in the presence of an external magnetic field ([1] and references therein). However,
linear-stability analyses of free-surface flows have received comparatively little attention. Here the OS and induction equa-
tions, in conjunction with the kinematic boundary condition at the free surface (2.5), pose a coupled eigenvalue problem
which must be solved for the complex growth rate c, the velocity and magnetic-field eigenfunctions, respectively, u and
b, as well as the free-surface oscillatory amplitude a.
. All rights reserved.
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Free-surface MHD arises in a variety of contexts, including liquid-metal diverters in fusion reactors [2,3], liquid-metal
forced flow targets [4], and surface models of accreting white dwarfs and neutron stars [5,6]. In these and other cases of
interest, hydrodynamic Reynolds numbers are large (Re J 104), and the flow takes place in the presence of a strong back-
ground magnetic field (Ha J 102, where Ha is the Hartmann number). All terrestrial fluids have small magnetic Prandtl num-
ber (e.g. Pm K 10�5 for laboratory liquid metals), suggesting that the magnetic field is well in the diffusive regime. On the
other hand, Pm ¼ Oð1Þ flows have been conjectured to play a role in astrophysical accretion disks [7].

The main objective of this work is to develop accurate and efficient spectral Galerkin schemes for linear-stability analyses
of free-surface and fixed-boundary MHD. Our schemes build on the Galerkin method for plane Poiseuille flow by Kirchner [8]
and Melenk, Kirchner, and Schwab [9], hereafter collectively referred to as KMS. As with the latter authors, we discretize the
continuous problems using the Legendre basis polynomials introduced by Shen [10]. A companion article [12] discusses the
operating physics in small-Pm flows. A future objective is to test our linear models against wave dispersion and critical Rey-
nolds number data from a free-surface MHD experiment at Princeton Plasma Physics Laboratory (PPPL) by Ji and co-workers
[13–15].

1.1. Background

Since the pioneering work of Orszag [16] in 1971, spectral methods have emerged as a powerful tool to solve hydrody-
namic-stability problems. Orszag applied a Chebyshev tau technique to transform the OS equation for plane Poiseuille flow
to a matrix generalized eigenproblem Ku ¼ cMu, which he solved at Reynolds numbers of order 104 using the QR algorithm.
The superior performance of the Chebyshev tau method compared to existing finite-difference and spectral schemes led to
its application to a diverse range of stability problems (e.g. [17]). However, despite the widespread use of spectral techniques
in flows with fixed domain boundaries, most numerical stability analyses of free-surface problems to date are based on fi-
nite-difference methods. Among these are the studies of gravity and shear-driven flows by De Bruin [18] and Smith and Da-
vis [19]. To our knowledge, the only related work in the literature employing spectral techniques is contained in the PhD
thesis by Ho [20], where the OS equation for a vertically falling film is solved at small Reynolds numbers (Re 6 10).

In MHD, numerical investigations on the stability of modified plane Poiseuille flow subject to a transverse magnetic field,
also known as Hartmann flow, begin in 1973 with the work of Potter and Kutchey [21], who used a Runge–Kutta technique to
solve the coupled OS and induction equations at small Hartmann numbers (Ha 6 6). Lingwood and Alboussiere [22] also em-
ployed a Runge–Kutta method to study the stability of an unbounded Hartmann layer. An early application of spectral meth-
ods was performed by Dahlburg et al. [23] in 1983, who adopted Orszag’s scheme to investigate the stability of a
magnetostatic quasiequilibrium (i.e. a state where the fluid is at rest but a slowly varying background magnetic field is pres-
ent). A Chebyshev tau method for plane Poiseuille and plane Couette flows in the presence of a transverse magnetic field was
later developed by Takashima [24,25]. Takashima’s calculations extend to high Reynolds and Hartmann numbers (Re � 107,
Ha � 103) and over a range of magnetic Prandtl numbers up to Pm ¼ 0:1. In addition, he considers the limiting case of van-
ishing magnetic Prandtl number, where the OS and induction equations are replaced by a single equation (2.2). However, his
analysis does not take into account modes other than the least stable one (cf. [8,16,17]).

A major challenge in hydrodynamic-stability problems at high Reynolds numbers is the existence of thin boundary layers,
whose thickness scales as ðaReÞ�1=2 for a normal mode of wavenumber a [26], requiring the use of large spectral orders p to
achieve convergence. Specifically, Melenk et al. [9] have shown that a necessary condition for accurate results is that the ra-
tio Re=p2 is small, implying that for problems of interest the required p can be in the thousands. At such high spectral orders
the Chebyshev tau method can be problematic, since it gives rise to stiffness and mass matrices, respectively K and M, that
are (i) densely populated (the storage and computation cost therefore scale as p2 and p3, respectively), and (ii) ill conditioned
(the matrix elements associated with a fourth-order differential operator, such as the OS one, grow as p7). One way to alle-
viate the matrix-coefficient growth problem is to pass to a streamfunction–vorticity formulation [27], or, more generally,
apply the D2 method proposed by Dongarra et al. [17]. Here one achieves a p3 coefficient scaling by casting the OS equation
into two coupled second-order equations, but at the expense of doubling the problem size.

Another drawback of the tau method is the occurrence of ‘spurious’ eigenvalues, i.e. eigenvalues with large magnitude
(e.g. Oð1017Þ [28]), and real-part oscillating between positive and negative values as p is varied. These numerical eigenvalues
are not at all related to the spectrum of the OS operator, and in order to avoid drawing erroneous conclusions (e.g. deciding
that a flow is unstable when the unstable mode is spurious), the practitioner must either detect them and ignore them in the
analysis (the non-spurious modes are computed correctly), or eliminate them by a suitable modification of the method (e.g.
[17,27]). Their origin has been elucidated by Dawkins et al. [29], who found that the large spurious eigenvalues in Chebyshev
tau schemes are perturbations of infinite eigenvalues in nearby Legendre tau discretizations.

Recently, KMS have developed a spectral Galerkin method that addresses some of the aforementioned shortcomings. Cen-
tral to their scheme is the use of Shen’s compact combinations of Legendre polynomials [10,11], or hierarchical shape func-
tions [30], as a basis of the Sobolev space H2

0 (the trial and test space for velocity eigenfunctions). The resulting orthogonality
properties solve the matrix-coefficient growth problem, and no reduction in the differential-equation order is required (in
fact, the condition number of K has been found to be independent of p J 100 [9]). Moreover, the stiffness and mass matrices
are sparse, provided that the basic velocity profile is polynomial. In that case, memory requirements scale as p, and iterative
solvers can be used to compute the eigenvalues and eigenvectors efficiently. As noted by Hill and Straughan [31,32],
who have developed similar techniques for stability analyses of porous and thermal convection, the reduced storage and



1190 D. Giannakis et al. / Journal of Computational Physics 228 (2009) 1188–1233
computation cost is particularly advantageous when dealing with multiple degrees of freedom, as one does in free-surface
MHD. A further attractive feature of the method, which appears to be connected to the non-singularity of M, is that it gives
no rise to spurious eigenvalues.

An additional, and perhaps more fundamental, challenge is related to the non-normality of hydrodynamic-stability oper-
ators, which becomes especially prominent at large Reynolds numbers. In that regime, even though the eigenfunctions may
form a complete set (as has been proved for bounded domains [33]), they are nearly linearly dependent. A key physical effect
of the eigenfunctions’ non-orthogonality is large transient growth of asymptotically stable perturbations, which suggests
that eigenvalue analysis is of little physical significance [34]. An alternative method that aims to capture the effects of tran-
sient growth is pseudospectra [35], but this will not be pursued here. We remark, however, that comparisons between spec-
tra and pseudospectra are common in pseudospectral analyses, and stable and efficient schemes for eigenvalue
computations are desirable even in that context.

At the numerical level, non-normality is associated with high sensitivity of the spectrum to roundoff errors [36]. This ef-
fect was noted by Orszag himself [16], who observed significant changes in the computed eigenvalues by artificially reducing
numerical precision from 10�14 to 10�8. The eigenmodes that are most sensitive to perturbations of the OS operator and its
matrix discrete analog are those lying close to the intersection point between the A, P, and S eigenvalue branches in the com-
plex plane (see [37] for a description of the nomenclature). Reddy et al. [38] have observed that in plane Poiseuille flow at
Re � 104 perturbations of order 10�6 suffice to produce Oð1Þ changes in the eigenvalues near the branch point. Moreover,
they found that roundoff sensitivity increases exponentially with the Reynolds number. Qualitatively, this type of growth
is attributed to the existence of solutions of the OS equation that satisfy the boundary conditions to within an exponentially
small error. In consequence, double-precision arithmetic (typically 15 digits) rapidly becomes inadequate, and for
Re J 4� 104 one obtains a diamond shaped pattern of numerical eigenvalues instead of a well resolved branch point (e.g.
Fig. 4 in [17] and Figs. 14–16). Dongarra et al. [17] have postulated that alleviation of this spectral instability requires the
use of extended-precision arithmetic, and cannot be removed by improving the conditioning of the numerical scheme
(e.g. employing a D method instead of D2 one). Melenk et al. [9] note that their Galerkin method accurately resolves the
eigenvalue branch point at Re ¼ 2:7� 104 using 64-bit arithmetic, when the Chebyshev tau method already produces the
diamond-shaped pattern. However, even a moderate Reynolds-number increase (e.g. Re ¼ 4� 104 in Fig. 14) results to
the appearance of the pattern, despite the Galerkin scheme’s superior conditioning. It therefore appears that, at least in these
examples, the decisive factor in roundoff sensitivity is the non-normality of the OS operator rather than the details of the
discretization scheme.

1.2. Plan of the present work

The principal contribution of this article is twofold. First, we generalize the spectral Galerkin method of KMS for plane
Poiseuille flow to free-surface and fixed-boundary MHD. Second, we present a number of test calculations aiming to assess
our schemes’ numerical performance, as well as to provide benchmark data. The calculations have been performed using a
Matlab code, available upon request from the corresponding author.

As already stated, central to the stability and efficiency of the KMS scheme is the use of suitable linear combinations of
Legendre polynomials as a basis of H2

0. In the sequel, we employ similar constructions to treat the free-surface MHD problem.
Here the velocity field obeys stress conditions at the free surface, which we enforce weakly (naturally) by supplementing the
basis with nodal shape functions [30]. Pertaining to the magnetic field, we assume throughout that the domain boundaries
are electrically insulating, from which it follows that it obeys boundary conditions of Robin type, with extra contributions
from the free-surface oscillation amplitude [12]. We enforce naturally these boundary conditions as well, discretizing the
magnetic field by means of the internal and nodal shape functions for H1. As we demonstrate in Sections 5.2.1 and 5.2.2,
our choice of bases gives rise (and is essential) to a major advantage of our schemes, namely that roundoff error is indepen-
dent of the spectral order p.

In problems with polynomial steady-state profiles the stiffness and mass matrices are sparse, and closed-form expres-
sions exist for their evaluation (see Appendix A). On the other hand, in Hartmann flow K becomes full and must be computed
numerically, since the discretization procedure introduces inner products of Legendre polynomials with exponential weight
functions. We evaluate the required integrals stably and without error by means of the Gauss quadrature rules developed by
Mach [39], who has studied a class of orthogonal polynomials with exponential weight functions on a finite interval. Follow-
ing the standard practice in finite-element and spectral-element methods [40,41], we also consider a method where the
problem’s weighted sesquilinear forms are replaced by approximate ones derived from Legendre–Gauss–Lobatto (LGL) quad-
rature rules. At an operational level, the latter approach has the advantage of being sufficiently general to treat arbitrary ana-
lytic profiles. However, it introduces quadrature errors, and one has to ensure that the stability and convergence of the
scheme are not affected. As shown by Banerjee and Osborn [42], in finite-element schemes for elliptical eigenvalue problems
that is indeed the case, provided that the approximated eigenfunctions are smooth and the quadrature rule is exact for poly-
nomial integrands of degree 2p� 1. To our knowledge, however, no such result exists in the literature for the OS eigenprob-
lems we study here, and is therefore not clear what (if any) quadrature precision would suffice. Even though we make no
attempt to parallel Banerjee and Osborn’s work, we nevertheless find that eigenvalues computed using approximate quad-
rature at the 2p� 1 precision level converge, modulo roundoff error, to the same value as the corresponding ones from the
exact-quadrature method.
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One of the advantages of the spectral Galerkin method is its flexibility. Our scheme for free-surface MHD can be straight-
forwardly adapted to treat MHD problems with fixed domain boundaries, problems in the limit of vanishing magnetic Pra-
ndtl number, as well as non-MHD problems. In Section 5.1 we describe the basic properties of the eigenvalue spectra of these
problems, leaving a discussion of the physical implications to Ref. [12]. We also present a series of critical Reynolds number
calculations (see Section 5.4), confirming that results obtained via the fixed-boundary variants of our schemes are in close
agreement with the corresponding ones by Takashima [24]. In free-surface problems, when Pm is increased from 10�8 to
10�4 the critical Reynolds number is seen to drop by a factor of five, while the corresponding relative variation in fixed-
boundary problems is less than 0:003. Due to the limited availability of eigenvalue data for free-surface flow (cf.
[8,9,17,24]), we were not able to directly compare our free-surface schemes to existing ones in the literature. Instead, we
have carried out two other types of consistency checks (see Section 5.3), one of which is based on energy-conservation laws
in free-surface MHD, whereas the second involves growth-rate comparisons with fully nonlinear simulations.

A numerical caveat concerns the aforementioned roundoff sensitivity at high Reynolds numbers. In Section 5.2.3 we ob-
serve that as Re grows our schemes experience the spectral instability that has been widely encountered in Poiseuille flow
[8,9,16,17,38]. Most likely, this issue is caused by the physical parameters of the problem, rather than the properties of the
discretization scheme, and can only be addressed by increasing the numerical precision. Unfortunately, since the latter op-
tion is (as of January 2008) not natively supported in Matlab, we merely acknowledge the existence of the instability, and
work throughout in double-precision arithmetic. We remark, however, that only the eigenvalues near the branch-intersec-
tion points are affected. In particular, eigenvalues and eigenfunctions at the top end of the spectrum can be accurately com-
puted at Reynolds numbers at least as high as 107. We also wish to note that the emphasis of our work is towards the
numerical side, and even though analytical techniques to study the stability and convergence of Galerkin methods for eigen-
value problems are well established in the literature ([43] and references therein), we do not pursue them here.

The plan of this paper is as follows. In Section 2 we specify the governing equations and boundary conditions of our mod-
els. In Section 3 we develop their weak formulation. The associated Galerkin discretizations are described in Section 4. We
present our numerical results in Section 5, and conclude in Section 6. Appendix A contains closed form expressions for the
matrix representations of the sesquilinear forms used in the main text. Although some of these can also be found in [8], we
opted to reproduce them here because that paper contains a number of typographical errors. Finally, in Appendix B we have
collected tables of eigenvalues for the problems examined in Section 5.1.
2. Problem description

2.1. Governing equations

Using x and z to denote the streamwise and flow-normal coordinates, and D to denote differentiation with respect to z, we
consider the coupled OS and induction equations,
Re�1ðD2 � a2Þ2u� ðcþ iaUÞð D2 � a2Þuþ iaðD2UÞuþ ðiaBx þ BzDÞðD2 � a2Þb� iaðD2BxÞb ¼ 0; ð2:1aÞ
and
Rm�1ðD2 � a2Þb� ðcþ iaUÞbþ ðiaBx þ BzDÞu ¼ 0; ð2:1bÞ
defined over an interval X ¼ ðz1; z2Þ 2 R. Here, u 2 C4ðXÞ and b 2 C3ðXÞ are, respectively, the velocity and magnetic-field
eigenfunctions corresponding to the eigenvalue c 2 C. Also, a > 0 is the wavenumber, and Re :¼ U0l=m and Rm :¼ U0l=g
are the hydrodynamic and magnetic Reynolds numbers, expressed in terms of the characteristic velocity and length, U0

and l, and the kinematic viscosity and magnetic diffusivity, m and g. The functions U 2 C2ðXÞ and Bx 2 C2ðXÞ are the stea-
dy-state velocity and streamwise magnetic field. The flow-normal, steady-state magnetic field Bz is constant, since ðBx;BzÞ,
where ð�; �Þ stands for ðx; zÞ vector components, is divergence free and streamwise invariant. The two-dimensional velocity
and magnetic fields associated with u and b are given by ReððiDu=a; uÞeiaxþctÞ and ReððiDb=a; bÞeiaxþctÞ.

A physical derivation of (2.1), as well as (2.2) and the boundary conditions (2.3)–(2.10) ahead, can be found in Refs.
[12,24]. Here we note that the magnetic-field variables b, Bx, and Bz have been rendered to non-dimensional form using
the characteristic magnetic-field B0 :¼ ðl0qÞ

1=2U0, where l0 and q are the permeability of free space and the fluid density,
respectively. With this choice of magnetic-field scale, u and b are naturally additive. Another option (employed, e.g. by Taka-
shima [24]) is to set B0 ¼ B0, where B0 is the typical steady-state magnetic field. The resulting non-dimensional eigenfunction
b0 is related to the one used here according to b0 ¼ Al b, where Al :¼ ðl0qÞ

1=2U0=B0 is the Alfvén number of the flow. We also
remark that we have adopted the eigenvalue convention used by Ho [20], under which ReðcÞ :¼ C corresponds to the modal
growth rate (i.e. a mode is unstable if C > 0), while C ¼: �ImðcÞ=a is the phase velocity. The complex phase velocity c ¼ ic=a,
where ReðcÞ ¼ C and ImðcÞa ¼ C, is frequently employed in the literature (e.g. [8,9,17–19,24]) in place of c.

Let Pm :¼ Rm=Re denote the magnetic Prandtl number; the ratio of viscous to magnetic diffusivity (see e.g. [44] for an
overview of the dimensionless parameters in MHD). A limit of physical interest, hereafter referred to as the inductionless
limit [1], is Pm& 0 with Bx independent of z, and the Hartmann numbers Hx :¼ BxRePm1=2 and Hz :¼ BzRePm1=2, measuring
the square root of the ratio of Lorentz to viscous forces, non-negligible. This situation corresponds to a fluid of sufficiently
high magnetic diffusivity so that magnetic-field perturbations are small (kbk � kuk in some suitable norm), but Lorentz
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forces due to currents induced by the perturbed fluid motions u within the steady-state field ðBx;BzÞ are nonetheless pres-
ent. It is then customary to make the approximation ðD2 � a2Þb ¼ �RmðiaBx þ BzDÞu [45] and replace (2.1) by the single
equation
Fig. 1.
(see Se
ðD2 � a2Þ2u� ðiaHx þ HzDÞ2u� Reðcþ iaUÞðD2 � a2Þuþ iaReðD2UÞu ¼ 0: ð2:2Þ
2.2. Boundary conditions

We study two types of problems, which we refer to as channel and film problems according to their geometrical config-
uration (see Fig. 1 for an illustration). Within each category we further distinguish among MHD problems, their counterparts
in the inductionless limit, and non-MHD problems, where all electromagnetic effects are neglected.

In channel problems the flow takes place between two fixed, parallel plates. As is customary, we make the domain choice
X ¼ Xc :¼ ð�1;1Þ, and enforce the no-slip boundary conditions
uð�1Þ ¼ Duð�1Þ ¼ 0: ð2:3Þ
Moreover, we assume that the plates and the region exterior to the flow are perfect insulators, which leads to the Robin
boundary conditions
Dbð�1Þ � abð�1Þ ¼ 0 ð2:4Þ
for the magnetic field.
In film problems we set X ¼ Xf :¼ ð�1;0Þ, and consider that the domain boundary z2 ¼ 0 corresponds to a free surface,

whose oscillation amplitude a 2 C obeys the kinematic boundary condition
uð0Þ � ðcþ iaUð0ÞÞa ¼ 0: ð2:5Þ
We assume that the free surface is subject to surface tension and gravity (see e.g. [46] for a discussion of free-surface dynam-
ics). The non-dimensional stress due to surface tension is given by aa2=ðCaReÞ, where the capillary number Ca :¼ lU0=r mea-
sures the ratio of viscous stresses to surface tension (here l ¼ qm and r are the bulk viscosity and surface-tension coefficient,
respectively). Ca is related to the Weber number We :¼ qU2

0l=r (the ratio of inertial stresses to surface tension) via
Ca ¼We=Re. Moreover, we express the z component of the gravitational force as �Ga=Re2, where Ga :¼ g cosðhÞl3

=m2 is the
Galilei number, defined in terms of the flow-normal gravitational field strength g cosðhÞ. The Galilei number measures the
ratio between flow-normal gravitational forces and viscous forces on a body moving at the viscous velocity scale
Um :¼ m=l. It is related to the Froude number Fr :¼ U0=ðglÞ1=2 (the ratio of inertial to gravitational velocity scales) according
to Ga ¼ Re2 cosðhÞ=Fr2. Our use of the parameters Ca and Ga, rather than the more familiar We and Fr, is motivated by the
fact that they are invariant under the Squire transformation for free-surface MHD [12]. Because of this, critical Reynolds
numbers computed for fixed Ca and Ga using our two-dimensional models are equal to those of the corresponding three-
dimensional flows. Typical values for a liquid-metal film of thickness l ’ 1 cm flowing with velocity U0 ’ 5 m s�1 are
Ca ’ 10�1 and Ga ’ 108 (e.g. [47–49]).

Balancing the forces acting on the free surface leads to the normal-stress condition
ðððD2 � 3a2ÞD� Reðcþ iaUÞDþ iaReðDUÞÞuÞjz¼0 þ ReðBzðD2 � a2Þ � iaðDBxÞÞbjz¼0

� a2 Ga2Re�1 þ a2Ca�1 þ ReBxð0ÞDBxð0Þ � 2iaDUð0Þ
� �

a ¼ 0; ð2:6Þ
and the shear-stress condition
D2uð0Þ þ a2uð0Þ � iaD2Uð0Þa ¼ 0: ð2:7Þ
The no-slip boundary conditions are again
uð�1Þ ¼ Duð�1Þ ¼ 0; ð2:8Þ
Geometry of channel (left) and film (right) problems. UðzÞ and BðzÞ are the steady-state velocity and induced magnetic-field profiles, respectively
ction 2.3).
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but the insulating boundary conditions
Dbð�1Þ � abð�1Þ ¼ Dbð0Þ þ abð0Þ � iaDBxð0Þa ¼ 0 ð2:9Þ
now involve the free-surface oscillation amplitude (cf. (2.4)). In the inductionless limit, the boundary conditions for b are not
required. Furthermore, (2.6) reduces to
ððD2 � 3a2ÞD� Reðcþ iaUÞDþ iaReðDUÞ � HzðiaHx þ HzDÞÞujz¼0 � a2 GaRe�1 þ a2Ca�1 � 2iaDUð0Þ
� �

a ¼ 0: ð2:10Þ
To summarize, we refer to all problems involving a free surface as film problems and those that take place within fixed
boundaries as channel problems. Within the film category, we call film MHD problems those governed by (2.1), subject to the
boundary conditions (2.5)–(2.9). These are to be distinguished from inductionless film problems, where the coupled OS and
induction equations are replaced by (2.2), and the boundary conditions are (2.5), (2.7), (2.8), and (2.10). Similarly, we differ-
entiate between channel MHD problems, specified by (2.1), (2.3), and (2.4), and their inductionless variants, where the differ-
ential equation and boundary conditions are, respectively (2.2) and (2.3). Finally, for what we refer to as non-MHD film
problems and non-MHD channel problems we set Hx ¼ Hz ¼ 0 in (2.2) and (2.10). We mention in passing that one can treat
in a similar manner ‘jet’ problems, where free-surface boundary conditions are enforced at z ¼ �1, although problems of this
type will not be considered here.

2.3. Steady-state configuration

In what follows we consider the magnetic-field configuration
ðBxðzÞ; BzÞ ¼ ðA�1
x ;A�1

z Þ þ ðA
�1
z RmBðzÞ;0Þ; ð2:11Þ
where ðA�1
x ;A�1

z Þ is a uniform, externally imposed magnetic field, quantified in terms of the streamwise and flow-normal
Alfvén numbers Ax and Az, and B 2 C2ðXÞ is a function representing the magnetic field induced by the fluid motion UðzÞwith-
in the background field (B is equal to the corresponding function B in [24]). For the test calculations presented in Section 5 we
employ the Hartmann profiles [1]
UðzÞ ¼ ðcoshðHzÞ � coshðHzzÞÞ=X; HzBðzÞ ¼ ðsinhðHzzÞ � sinhðHzÞzÞ=X; ð2:12Þ
where Hz ¼ ðReRmÞ1=2A�1
z , X ¼ coshðHzÞ � 1, and z 2 ½�1;1�. Note that the expressions above are valid for both channel and

film problems. In the latter case, one restricts z to the interval Xf to obtain ‘half’ of the corresponding channel profile. A fur-
ther useful quantity is the mean velocity,
hUi :¼
Z z2

z1

dz
UðzÞ

z2 � z1
¼ ðcoshðHzÞ � sinhðHzÞ=HzÞ=X; ð2:13Þ
which grows monotonically from 2=3 to 1 as Hz increases from zero to infinity.
The steady-state configuration described by (2.11) and (2.12) is a solution of the unperturbed Navier–Stokes and induc-

tion equations [12]. In the limit Hz & 0 we have
UðzÞ ¼ 1� z2; BðzÞ ¼ �zð1� z2Þ=3; ð2:14Þ
indicating that the velocity profile reduces to the usual Poiseuille one. Even though B is non-zero in the limit, the streamwise
induced magnetic field A�1

z RmB ¼ Pm1=2HzB vanishes. For Hz > 0 the velocity and magnetic-field profiles develop exponential
tails of thickness 1=Hz, where the vorticity and current are concentrated. These so-called Hartmann layers form near the no-
slip walls, as shown in Fig. 2.

2.4. Energy balance

In Sections 5.1 and 5.3 ahead we shall make use of energy conservation laws for the normal modes, which follow from the
linearized Navier–Stokes and induction equations governing the evolution of linear perturbations in MHD. Leaving the de-
tails of the derivation to [12], to each ðu; b; aÞ satisfying (2.1) and the boundary conditions (2.5)–(2.9) we assign an energy
E :¼ Eu þ Eb þ Ea, consisting of kinetic, magnetic, and surface contributions
Eu :¼
Z 0

�1
dz ðjDuðzÞj2 þ a2juðzÞj2Þ; ð2:15aÞ

Eb :¼
Z 0

�1
dz ðjDbðzÞj2 þ a2jbðzÞj2Þ þ aðjbð�1Þj2 þ jbð0Þj2Þ; ð2:15bÞ

Ea :¼ a2Re�1 GaRe�1 þ Bxð0ÞDBxð0Þ þ Ca�1a2
� �

jaj2: ð2:15cÞ
Here the kinetic energy Eu is (up to a proportionality constant) the energy norm of the 2D velocity field associated with the
velocity eigenfunction u, while the magnetic energy contains, in addition to the energy norm of the magnetic field within the
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Fig. 2. Steady-state velocity U (left) and magnetic field B (right) for Hartmann flow (2.12) with Hz 2 f0;10;20g.
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fluid, boundary terms representing the energy of the field penetrating through the insulating boundaries. The surface energy
consists of potential energy due to gravitational and magnetic stresses, plus a contribution from surface tension. In induc-
tionless problems the modal energy is E ¼ Eu þ Ea, where Eu is given by (2.15a), and Ea follows from (2.15c) with Bx set to
zero.

Aside from E, to each ðu; b; aÞ correspond energy-transfer terms
CR :¼ a
E

Z 0

�1
dz ðDUðzÞÞImðuðzÞ	DuðzÞÞ; ð2:16aÞ

CM :¼ �a
E

Z 0

�1
dz ðDUðzÞÞImðbðzÞ	DbðzÞÞ; ð2:16bÞ

CJ :¼ a
E

Z 0

�1
dz ðDBxðzÞÞImðuðzÞ	DbðzÞ � bðzÞ	DuðzÞÞ; ð2:16cÞ

Cm :¼ � 1
2ERe

Z 0

�1
dz ðjD2uðzÞj2 � 2a2ReðuðzÞ	D2uðzÞÞ þ a4juðzÞj2Þ; ð2:16dÞ

Cg :¼ � 1
2ERm

Z 0

�1
dz ðjD2bðzÞj2 � 2a2ReðbðzÞ	D2bðzÞÞ þ a4jbðzÞj2Þ; ð2:16eÞ

CaU :¼ a
ERe
ðD2Uð0ÞÞImðDuð0Þa	Þ; ð2:16fÞ

CaJ :¼ a
ERm

ðDBxð0ÞÞ ImððD2bð0Þ � a2bð0ÞÞa	Þ þ BzImðDuð0Þa	Þ þ aBxð0ÞReðuð0Þa	Þ
� �

; ð2:16gÞ
each of which has a physical interpretation. CR and CM are the Reynolds and Maxwell stress terms, i.e. the energy transferred
from the steady-state velocity field U to the velocity and magnetic-field perturbations. CJ is the so-called current interaction;
the energy transfer rate from the steady-state current J :¼ Rm�1DBx to the perturbations. The non-positive quantities Cm and
Cg are, respectively, the viscous and resistive dissipation. Finally, the surface terms CaU and CaJ represent the energy transfer
rate to the free surface by the steady-state velocity and current, mediated by viscous and electromagnetic forces, respec-
tively. It can be shown that the sum of the terms in (2.16) is equal to the modal growth rate. That is, the real part C of
the eigenvalue c corresponding to ðu; b; aÞ is expressible as
C ¼ ReðcÞ ¼ CR þ CM þ CJ þ Cm þ Cg þ CaU þ CaJ : ð2:17Þ
Similar energy-balance relations can be derived for channel and inductionless problems, but we do not require them here.

3. Weak formulation

We now cast the eigenvalue problems specified in Section 2 into weak (variational) form, suitable for the Galerkin
schemes developed in Section 4. With a slight abuse of notation we use the symbol X to denote the domain of both film
and channel problems, where it is understood that X stands for either Xf (film problems) or Xc (channel problems), depend-
ing on the context. Also, we collectively denote the vector spaces of admissible solutions for the velocity and magnetic-field
eigenfunctions by Vu and Vb, respectively, even though different versions of these spaces will be constructed for film and
channel problems. In what follows, we describe the procedure of obtaining the weak formulation of film MHD problems.
Channel MHD problems, as well as the inductionless variants of film and channel problems, can be treated in an analogous
manner, and, in the interests of brevity, we shall merely state the results.
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Given an interval X ¼ ðz1; z2Þ 2 R, we denote by L2ðXÞ the Hilbert space of square-integrable complex-valued functions on
X, equipped with the inner product ðv1;v2Þ0;X :¼

R z2
z1

dzv1ðzÞv2ðzÞ	 and induced norm kvk2
0;X :¼ ðv; vÞ0;X. We then introduce as

usual (e.g. [50]) the Sobolev spaces HkðXÞ, k 2 N, consisting of elements v 2 L2ðXÞ, whose weak derivatives Ddv for jdj 6 k are
also in L2ðXÞ. Moreover, Hk

0ðXÞ are the closures in HkðXÞ of C10 ðXÞ, the space of smooth, compactly supported functions on X.
The associated semi-norms and norms are given by jvj2k;X :¼ kDkvk2

0;X and kvk2
k;X :¼

Pk
n¼0jvj

2
k , where j � jk;X and k � kk;X are

equivalent norms on Hk
0ðXÞ. Using the symbol ,! to denote embedding, it is a consequence of the Sobolev embedding the-

orem that H2ðXÞ,!C1ðXÞ [50]. That is, each v 2 H2ðXÞ is equal to a unique function ~v 2 C1ðXÞ, except on a measure-zero sub-
set of X. This allows us to define the boundary-value maps Sj

i : H2ðXÞ# C for i 2 f1;2g and j 2 f0;1g, where Sj
iðvÞ ¼ Djð~vðziÞÞ.

We then construct the space
H2
1ðXÞ :¼ fv 2 H2ðXÞ; S0

1ðvÞ ¼ S1
1ðvÞ ¼ 0g; ð3:1Þ
which will be used as trial and test space of velocity eigenfunctions in film problems. Using the embedding H1ðXÞ,!C0ðXÞ, we
also introduce the boundary-value maps S0

i ðvÞ ¼ ~vðziÞ for H1ðXÞ, where now v 2 H1ðXÞ and ~v is its image in C0ðXÞ. The latter
two maps will be used to (weakly) enforce the insulating boundary conditions obeyed by the magnetic field.

In the strong (classical) formulation of film MHD problems we express Eqs. (2.1) and (2.5) in the form
Kðu; b; aÞ ¼ cMðu; b; aÞ; ð3:2Þ
where K and M are matrix differential operators. These so-called ‘stiffness’ and ‘mass’ operators, respectively with domain
DK ¼ C4ðXÞ � C2ðXÞ � C and DM ¼ C2ðXÞ � C1ðXÞ � C 
 DK, are given by
Kðu; b; aÞ ¼
Kuu Kub 0
Kbu Kbb 0
S0

1 0 �iaUð0Þ

0B@
1CA u

b
a

0B@
1CA; Mðu; b; aÞ ¼

�ReðD2 � a2Þ 0 0
0 Rm 0
0 0 1

0B@
1CA u

b
a

0B@
1CA; ð3:3Þ
where
Kuu ¼ �ðD2 � a2Þ2 þ iaReðUðD2 � a2Þ � ðD2UÞÞ; Kbb ¼ D2 � a2 � iaRmU; ð3:4aÞ
Kub ¼ �ReðiaBx þ BzDÞðD2 � a2Þ þ iaReðD2BxÞ; Kbu ¼ RmðiaBx þ BzDÞ: ð3:4bÞ
Note that in (3.2) we have multiplied the OS equation (2.1a) by �1. This is a conventional manipulation, with no influence on
the scheme’s numerical behavior, made in order to obtain a positive-definite mass form in (3.5) below. The strong version of
the problem may then be stated as follows: find c 2 C and ðu; b; aÞ 2 DK n fð0;0;0Þg, such that the governing equations (3.2),
and the boundary conditions (2.5)–(2.9) are satisfied.

In order to pass from the strong to the weak (variational) formulation, one begins by identifying the spaces of admissible
solutions Vu and Vb for the velocity and magnetic-field eigenfunctions, respectively. In film problems we set Vu ¼ H2

1ðXÞ and
Vb ¼ H1ðXÞ, so that the no-slip boundary conditions (2.8) are enforced strongly. On the other hand, the stress and insulating
boundary conditions, (2.6), (2.7), and (2.9), must be imposed in a natural (weak) sense (e.g. [20,51]). Taking the free-surface
amplitude into account, the full solution space is therefore V ¼ Vu � Vb � C, which we equip with the direct-sum inner prod-
uct ðv1;v2ÞV ;X :¼ ðu1;u2Þ0;X þ ðb1; b2Þ0;X þ a1a	2, where uj 2 Vu, bj 2 Vb, aj 2 C, and v j ¼ ðuj; bj; ajÞ 2 V for j 2 f1;2g.

We now proceed to construct sesquilinear forms K and M associated to K and M, respectively. Introducing a test element
~v ¼ ð~u; ~b; ~aÞ 2 V , we form the ð�; �ÞV ;X inner product of (3.2) with ~v , namely ðKðu; b; aÞ; ~vÞV ;X ¼ cðMðu; b; aÞ; ~vÞV ;X. Upon inte-
gration by parts this leads to
Kðv ; ~vÞ ¼ cMðv; ~vÞ; ð3:5Þ
where now v ¼ ðu; b; aÞ 2 V 
 DðKÞ. Also, K : V � V # C and M : V � V # C are sesquilinear forms associated with the mass
and stiffness operators K and M, respectively. We make the decompositions
Kðv ; ~vÞ ¼ Kuuðu; ~uÞ þ Kubðb; ~uÞ þ Kuaða; ~uÞ þ Kbuðu; ~bÞ þ Kbbðb; ~bÞ þ Kbaðb; ~aÞ þ Kauðu; ~aÞ þ Kaað~a; aÞ; ð3:6aÞ
Mðv ; ~vÞ ¼ Muuðu; ~uÞ þMbbðb; ~bÞ þMaaða; ~aÞ; ð3:6bÞ
which consist of the following objects: In (3.6a), Kuu : Vu � Vu # C, Kbb : Vb � Vb # C, and Kaa : C� C # C are sesquilinear
forms given by
Kuuðu; ~uÞ ¼ K½0�uuðu; ~uÞ þ K½U�uu ðu; ~uÞ þ K½S�uuðu; ~uÞ; ð3:7aÞ
Kbbðb; ~bÞ ¼ K

½0�
bbðb; ~bÞ þ K

½U�
bb ðb; ~bÞ þ K

½I�
bbðb; ~bÞ; ð3:7bÞ

Kaaða; ~aÞ ¼ �iaUð0Þa~a	; ð3:7cÞ
where we have split (3.7a) and (3.7b) into free-stream terms,
K½0�uuðu; ~uÞ :¼ �ððD2u;D2~uÞ0;X þ 2a2ðDu;D~uÞ0;X þ a4ðu; ~uÞ0;XÞ; ð3:8aÞ

K
½0�
bbðb; ~bÞ :¼ �ððDb;D~bÞ0;X þ a2ðb; ~bÞ0;XÞ; ð3:8bÞ
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contributions from the velocity profile U,
K½U�uu ðu; ~uÞ :¼ �iaReððUDu;D~uÞ0;X þ a2ðUu; ~uÞ0;X � ððDUÞu;D~uÞ0;XÞ; ð3:9aÞ

K
½U�
bb ðb; ~bÞ :¼ �iaRmðUb; ~bÞ0;X; ð3:9bÞ
free-surface terms
K½S�uuðu; ~uÞ :¼ �a2ðS0
2ðuÞ S1

2ð~uÞ
	 þ S1

2ðuÞS
0
2ð~uÞ

	Þ; ð3:10Þ
and contributions from the insulating boundary conditions
K
½I�
bbðb; ~bÞ :¼ �aðS0

1ðbÞS
0
1ð~bÞ

	 þ S0
2ðbÞS

0
2ð~bÞ

	Þ: ð3:11Þ
Moreover, Kub : Vb � Vu # C and Kbu : Vu � Vb # C are maps defined by
Kubðb; ~uÞ ¼ iaReððBxDb;D~uÞ0;X þ a2ðBxb; ~uÞ0;X � ððDBxÞb;D~uÞ0;XÞ � ReBzððDb;D2~uÞ0;X þ a2ðb;D~uÞ0;XÞ
� aReS0

2ðbÞðiaBxð0Þ S0
2ð~uÞ þ BzS1

2ð~uÞÞ
	
; ð3:12aÞ

Kbuðu; ~bÞ ¼ RmðiaðBxu; ~bÞ0;X þ BzðDu; ~bÞ0;XÞ: ð3:12bÞ
For the parameterization (2.11) of the magnetic field we have
Kubðb; ~uÞ ¼ K
½0�
ubðb; ~uÞ þ K

½B�
ubðb; ~uÞ þ K

½S�
ubðb; ~uÞ; Kbuðu; ~bÞ ¼ K

½0�
buðu; ~bÞ þ K

½B�
buðu; ~bÞ; ð3:13Þ
where, employing a similar notation as above,
K
½0�
ubðb; ~uÞ :¼ iaReA�1

x ððDb;D~uÞ0;X þ a2ðb; ~uÞ0;XÞ � ReA�1
z ððDb;D2~uÞ0;X þ a2ðb;D~uÞ0;XÞ; ð3:14aÞ

K
½0�
buðu; ~bÞ :¼ iaRmA�1

x ðu; ~bÞ0;X þ RmA�1
z ðDu; ~bÞ0;X ð3:14bÞ
are free-stream terms,
K
½B�
ubðb; ~uÞ :¼ iaReHzPm1=2ððBDb;D~uÞ0;X þ a2ðBb; ~uÞ0;X � ððDBÞb;D~uÞ0;XÞ; ð3:15aÞ

K
½B�
buðu; ~bÞ :¼ iaRmHzPm1=2ðBu; ~bÞ0;X ð3:15bÞ
are the contributions from the induced magnetic field B, and
K
½S�
ubðb; ~uÞ :¼ �aReS0

2ðbÞðiaðA
�1
x þ A�1

z RmBð0ÞÞS0
2ð~uÞ þ A�1

z S1
2ð~uÞÞ

	 ð3:16Þ
are free-surface terms. The maps Kua : C� Vu # C, Kba : C� Vb # C, and Kau : Vu � C # C, where
Kuaða; ~uÞ :¼ �a2 GaRe�1 þ a2Ca�1 � 2iaDUð0Þ
� �

aS0
2ð~uÞ

	 þ iaðD2Uð0Þ þ H2
z DBð0ÞÞaS1

2ð~uÞ
	
; ð3:17aÞ

Kbaða; ~bÞ :¼ iaA�1
z RmDBð0ÞaS0

2ð~bÞ
	
; ð3:17bÞ

Kauðu; ~aÞ :¼ S0
2ðuÞ~a	; ð3:17cÞ
represent the coupling of the velocity and magnetic field to the free-surface amplitude. Finally, Eq. (3.6b) contains the forms
Muu : Vu � Vu # C, Mbb : Vb � Vb # C, and Maa : C� C # C, where
Muuðu; ~uÞ :¼ ReððDu;D~uÞ0;X þ a2ðu; ~uÞ0;XÞ; ð3:18aÞ

Mbbðb; ~bÞ :¼ Rmðb; ~bÞ0;X; ð3:18bÞ
Maaða; ~aÞ :¼ a~a	: ð3:18cÞ
We are now ready to state the weak formulation of film MHD problems:

Definition 1 (Film MHD problem). Let X ¼ Xf , Vu ¼ H2
1ðXÞ, Vb ¼ H1ðXÞ, and V ¼ Vu � Vb � C. Then, find ðc;vÞ 2 C� V n f0g,

such that for all ~v 2 V Eq. (3.5), with K and M given by (3.6), is satisfied.

In a similar manner, one can construct weak formulations of the form (3.5) for channel MHD problems, as well as film and
channel problems in the inductionless limit. In what follows, we will always use V to denote the full (direct sum) solution
space. Also, we shall employ throughout the notation K and M for the stiffness and mass forms, and Kuu, Muu, etc. for their
constituent sub-maps. It is understood that the maps act on pairs of elements from the appropriate vector space, and their
definitions are restricted to the problem type under consideration. In channel MHD problems, we select the solution spaces
Vu ¼ H2

0ðXÞ, Vb ¼ H1ðXÞ, and V ¼ Vu � Vb, where now X ¼ Xc . The stiffness and mass forms in (3.5) read
Kðv; ~vÞ ¼ Kuuðu; ~uÞ þ Kubðb; ~uÞ þ Kbuðu; ~bÞ þ Kbbðb; ~bÞ; ð3:19aÞ
Mðv; ~vÞ ¼ Muuðu; ~uÞ þMbbðb; ~bÞ; ð3:19bÞ
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where Kbu, Kbb, Muu, and Mbb are defined as the corresponding maps for film problems, i.e. (3.12b), (3.7b), (3.18a), and (3.18b).
However, Kuu and Kub are now given by
Kuuðu; ~uÞ ¼ K½0�uuðu; ~uÞ þ K½U�uu ðu; ~uÞ; Kubðb; ~uÞ ¼ K
½0�
ubðb; ~uÞ þ K

½B�
ubðb; ~uÞ; ð3:20Þ
where K½0�uu, K½U�uu , K½0�ub, and K
½B�
ub have the same form as (3.8a), (3.9a), (3.14a) and (3.15a), respectively. The absence of the bound-

ary terms in (3.20) is due to the essential imposition of the velocity boundary conditions (2.3). With these specifications, the
variational formulations of channel MHD problems is as follows.

Definition 2 (Channel MHD problem). Set X ¼ Xc , and Vu ¼ H2
0ðXÞ, Vb ¼ H1ðXÞ, V ¼ Vu � Vb. Then, find ðc;vÞ 2 C� V n f0g,

such that for all ~v 2 V Eq. (3.5), with K and M given by (3.19), holds.

Film problems in the inductionless limit are governed by (2.2) subject to the boundary conditions (2.5), (2.7), (2.8)
and (2.10). Like in full MHD problems we set Vu ¼ H2

1ðXÞ, but now V ¼ Vu � C. The stiffness and mass forms then
become
Kðv ; ~vÞ ¼ Kuuðu; ~uÞ þ Kuaða; ~uÞ þ Kauðu; ~aÞ þ Kaaða; ~aÞ; Mðv ; ~vÞ ¼ Muuðu; ~uÞ þMaaða; ~aÞ; ð3:21Þ
where
Kuuðu; ~uÞ ¼ K½0�uuðu; ~uÞ þ K½U�uu ðu; ~uÞ þ K½S�uuðu; ~uÞ þ K½L�uuðu; ~uÞ: ð3:22Þ
Here the form K½L�uu : Vu � Vu # C, defined by
K½L�uuðu; ~uÞ :¼ �a2H2
x ðu; ~uÞ0;X þ iaHxHzððDu; ~uÞ0;X � ðu;D~uÞ0;XÞ � H2

z ðDu;D~uÞ0;X; ð3:23Þ
represents the contributions from Lorentz forces, and K½0�uu, K½U�uu , and K½S�uu are given by (3.8a), (3.9a) and (3.10). Moreover,
Kuaða; ~uÞ :¼ �a2 GaRe�1 þ a2Ca�1 � 2iaDUð0Þ
� �

aS0
2ð~uÞ

	 þ iaD2Uð0ÞaS1
2ð~uÞ

	 ð3:24Þ
is the analog of (3.17a) in the inductionless limit. The maps Kau, Kaa, Muu, and Maa are defined in (3.17c), (3.7c), (3.18a), and
(3.18c), respectively. Therefore, we can now state the weak formulation of inductionless film problems:

Definition 3 (Inductionless film problem). Let X ¼ Xf , Vu ¼ H2
1ðXÞ, and V ¼ Vu � C. Find ðc;vÞ 2 C� V n f0g, such that (3.5),

with K and M given by (3.21), is satisfied for all ~v 2 V .

The trial and test space for inductionless channel problems is simply V ¼ Vu ¼ H2
0ðXÞ. Moreover, the stiffness and mass

forms reduce to
Kðv ; ~vÞ ¼ Kuuðu; ~uÞ; Mðv ; ~vÞ ¼ Muuðu; ~uÞ; ð3:25Þ
where
Kuu ¼ K½0�uuðu; ~uÞ þ K½U�uu ðu; ~uÞ þ K½L�uuðu; ~uÞ; ð3:26Þ
and, as usual, K½0�uu, K½U�uu and K½L�uu are given by (3.8a), (3.9a) and (3.23), and Muu by (3.18a). Inductionless channel problems then
have the following weak formulation.

Definition 4 (Inductionless channel problem). Let V ¼ H2
0ðXÞ, where X ¼ Xc . Let also K and M be the stiffness and mass forms

given by (3.25). Then, find v 2 V such that the relation (3.5) is satisfied for all ~v in V.

We note that the weak formulation of non-MHD problems, in both film and channel geometries, follows by setting the
Hartmann numbers, Hx and Hz, in Definitions 3 and 4 equal to zero.

4. Galerkin discretization

The Galerkin discretization of the variational problems formulated in Section 3, collectively represented by equations of
the form (3.5), involves replacing the spaces Vu and, where applicable, Vb by finite-dimensional spaces VNu

u � Vu and
VNb

b � Vb, respectively, of dimension Nu and Nb. Denoting the set of polynomials of degree p on X by PpðXÞ, we define
VNu
u :¼ Vu \ PpuðXÞ; VNb

b :¼ Vb \ Ppb ðXÞ; ð4:1Þ
where it is understood that X stands for Xf ðXc) when the problem under consideration is of film (channel) type. The sub-
spaces VNu

u and VNb
b provide a dense coverage of Vu and Vb in the limit Nu;Nb !1. Introducing the multi-index N, where

N ¼ ðNu;NbÞ for MHD problems, and N ¼ Nu for their inductionless counterparts, finite-dimensional spaces VN 2 V , where
dimðVNÞ ¼: N can be constructed by substituting VNu

u for Vu, and VNb
b for Vb in the definitions for V. Then, the Galerkin dis-

cretization of the variational problems (3.5) can be stated as follows: Find ðc;vÞ 2 C� VN n f0g such that for all ~v 2 VN

the relation
eKðv; ~vÞ ¼ cMðv; ~vÞ ð4:2Þ
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is satisfied. Here eK : VN � VN
# C is an approximation of K (the details of which will be specified in Section 4.2), oftentimes

introduced to perform numerically the quadratures associated with the velocity and/or magnetic-field profiles, U and B.
However, in a number of cases, including the Poiseuille and Hartmann profiles considered below, the quadratures can be
performed exactly and eK is equal to K for all elements of VN . Given a basis fwig

N
i¼1 of VN , Eq. (4.2) is equivalent to the matrix

generalized eigenproblem
Kv ¼ cMv ; ð4:3Þ
where the stiffness and mass matrices, K 2 CN�N and M 2 CN�N , have elements
Kmn ¼ eKðwn;wmÞ; Mmn ¼ Mðwn;wmÞ; ð4:4Þ
and v ¼ ðv1; . . . ;vNÞT 2 CN is a column vector of the components of v in the fwig
N
i¼1 basis.

The matrix eigenproblem (4.3) can be solved using, e.g. the QZ algorithm [52,53] or implicitly restarted Arnoldi methods
[54]. Its numerical properties, such as roundoff sensitivity and memory requirements, depend strongly on the choice of basis
for VN . Following Shen [10] and KMS, in the sequel we use basis functions that are linear combinations of Legendre polyno-
mials, constructed according to the smoothness of the underlying infinite-dimensional solution space (i.e. its Sobolev order),
as well as the boundary conditions. In these bases, the matrices K and M are well conditioned at large spectral orders. More-
over, if the velocity and magnetic-field profiles are polynomial, they are banded and sparse, and stable, closed-form expres-
sions exist for their non-zero elements. In problems with Hartmann steady-state profiles the stiffness matrix ceases to be
sparse, and the contributions from U and B must be computed using numerical quadrature. Yet, K remains well-conditioned
even at high spectral orders (see Section 5.2.2).

4.1. Choice of basis

In order to construct our bases for VNu
u and VNb

b we first introduce the reference interval bX :¼ ð�1;1Þ and the linear map
Q : bX # X ¼ ðz1; z2Þ, where
QðnÞ ¼ z0 þ jn; z0 :¼ ðz1 þ z2Þ=2; j :¼ h=2 :¼ ðz2 � z1Þ=2: ð4:5Þ
In film problems we have z2 ¼ 0, z1 ¼ �1, z0 ¼ 1=2, and h ¼ 1, whereas in channel problems Q becomes the identity map
(z2 ¼ 1, z1 ¼ �1, z0 ¼ 0, and h ¼ 2). Uniformly continuous functions on X can be transported to bX via the pullback map
Q 	 : C0ðXÞ# C0ðbXÞ, where ðQ 	f ÞðnÞ ¼ f ðQðnÞÞ for any f 2 C0ðXÞ. The pushforward map Q 	 : C0ðbXÞ# C0ðXÞ, where
ðQ 	 f̂ ÞðzÞ ¼ f̂ ðQ�1ðzÞÞ and f̂ 2 C0ðbXÞ, carries out the reverse operation. Moreover, a straightforward application of the chain
rule leads to the relations
Dd1 ðQ 	 f̂ 1ÞðQð�1ÞÞ ¼ j�d1cDd1 f̂ 1ð�1Þ; ð4:6aÞ
ððDdg gÞDd1 Q 	 f̂ 1;D

d2 Q 	 f̂ 2Þ0;X ¼ j1�dg�d1�d2 ðbDdg ðQ 	gÞbDd1 f̂ 1; bDd2 f2Þ
0;bX ; ð4:6bÞ
where bD is the derivative operator on bX, and f̂ i and g are sufficiently smooth functions, respectively, on bX and X.
Let Ln, where n ¼ 0;1;2; . . ., denote the nth Legendre polynomial defined on bX and normalized such that Lnð1Þ ¼ 1 (see,

e.g. [55] for various properties of the Legendre polynomials). The Legendre polynomials obey the orthogonality relation
ðLn; LmÞ
0;bX ¼ 2dmn=ð2nþ 1Þ; ð4:7aÞ
where dmn is the Kronecker delta. In addition, the inner-product relations
ðw1Ln; LmÞ
0;bX

2
¼ ðnþ 1Þdm;nþ1

ð2nþ 1Þð2nþ 3Þ þ
ndm;n�1

ð2n� 1Þð2nþ 1Þ ; ð4:7bÞ

ðw2Ln; LmÞ
0;bX

2
¼ ðnþ 1Þðnþ 2Þdm;nþ2

ð2nþ 1Þð2nþ 3Þð2nþ 5Þ þ
ðn� 1Þðnþ 1Þ þ nðnþ 2Þ
ð2n� 1Þð2nþ 1Þð2nþ 3Þ dmn þ

nðn� 1Þdm;n�2

ð2n� 3Þð2n� 1Þð2nþ 1Þ ð4:7cÞ
hold, where wk denote the weight functions wkðnÞ ¼ nk. The values of the Legendre polynomials and their first derivatives at
the domain boundaries are given by
Lnð�1Þ ¼ ð�1Þn; bDLnð1Þ ¼ nðnþ 1Þ=2; bDLnð�1Þ ¼ ð�1Þnþ1nðnþ 1Þ=2: ð4:8Þ
Moreover, the property
ð2nþ 1ÞLn ¼ bDLn � bDLn�1 ð4:9Þ
is useful for evaluating integrals of the Ln.
We introduce the following linear combinations of Legendre polynomials, which will be used as bases of the vector spaces

Hk
0ðbXÞ \ PpðbXÞ (for k 2 f0;1;2g), H1ðbXÞ \ PpðbXÞ, and H2

1ðbXÞ \ PpðbXÞ:
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Proposition 1. The polynomials
k½0�n ðnÞ :¼ ðð2n� 1Þ=2Þ1=2Ln�1ðnÞ; ð4:10aÞ

k½1�n ðnÞ :¼
Z n

�1
dgk½0�nþ1ðgÞ ¼

Lnþ1ðnÞ � Ln�1ðnÞ
ð2ð2nþ 1ÞÞ1=2 ; ð4:10bÞ

k½2�n ðnÞ :¼
Z n

�1
dgk½1�nþ1ðgÞ ¼

1

ð2ð2nþ 3ÞÞ1=2

Lnþ3ðnÞ � Lnþ1ðnÞ
2nþ 5

� Lnþ1ðnÞ � Ln�1ðnÞ
2nþ 1

� �
; ð4:10cÞ
where 1 6 n 6 N, span the spaces L2ðbXÞ \ PN�1ðbXÞ, H1
0ðbXÞ \ PNþ1ðbXÞ, and H2

0ðbXÞ \ PNþ3ðbXÞ, respectively. In addition, they satisfy
the orthogonality relations
ðk½0�n ; k
½0�
m Þ0;bX ¼ ðbDk½1�n ;

bDk½1�m Þ0;bX ¼ ðbD2k½2�n ;
bD2k½2�m Þ0;bX ¼ dmn: ð4:11Þ
Proposition 2. Let
lnðnÞ :¼
ð1� nÞ=2; n ¼ 1;
ð1þ nÞ=2; n ¼ 2;

k½1�n�2ðnÞ; n P 3:

8><>: ð4:12Þ
Then, flng
N
n¼1 is a basis of H1ðbXÞ \ PN�1ðbXÞ. The values of the basis functions at the domain boundaries are
l1ð�1Þ ¼ l2ð1Þ ¼ 1; l1ð1Þ ¼ l2ð�1Þ ¼ 0; ð4:13aÞ
lnð�1Þ ¼ 0; n P 3 ð4:13bÞ
Furthermore, the inner-product relations
ðbDl1;
bDl1Þ0;bX ¼ ðbDl2;

bDl2Þ0;bX ¼ �ðbDl1;
bDl2Þ0;bX ¼ �1=2; ð4:14aÞ

ðbDln;
bDlmÞ0;bX ¼ 0; n 2 f1;2g and m P 3; ð4:14bÞ

ðbDln;
bDlmÞ0;bX ¼ dmn; n P 3 and m P 3 ð4:14cÞ
hold.

Proposition 3. The polynomials mnðnÞ, where
mnðnÞ :¼
�ð1þ nÞ2ðn� 2Þ=4; n ¼ 1;

ð1þ nÞ2ðn� 1Þ=4; n ¼ 2;

k½2�n�2ðnÞ; 3 6 n 6 N;

8><>: ð4:15Þ
span the space H2
1ðbXÞ \ PNþ1ðbXÞ. They have the properties
m1ð1Þ ¼ bDm2ð1Þ ¼ 1; bDm1ð1Þ ¼ m2ð1Þ ¼ 0; ð4:16aÞ
mnð�1Þ ¼ bDmnð�1Þ ¼ 0; n 2 f1;2g; ð4:16bÞ
mnð�1Þ ¼ bDmnð�1Þ ¼ 0; n P 3; ð4:16cÞ
and also satisfy the orthogonality relations
ðbD2m1; bD2m1Þ
0;bX ¼ �ðbD2m1; bD2m2Þ

0;bX ¼ 3=2; ðbD2m2; bD2m2Þ
0;bX ¼ 2; ð4:17aÞ

ðbD2mn; bD2mmÞ
0;bX ¼ 0; n 2 f1;2g and m P 3; ð4:17bÞ

ðbD2mn; bD2mmÞ
0;bX ¼ dmn; n P 3 and m P 3: ð4:17cÞ
One can check that within each of the sets of polynomials defined in Propositions 1–3 the elements are linearly indepen-
dent and, as follows from (4.8), satisfy the appropriate boundary conditions. In particular, the polynomials k½k�n have the
properties
bDjk½k�n ð�1Þ ¼ 0; ð4:18Þ
where 0 6 j 6 k� 1. In the context of finite element methods (FEMs) they are referred to as internal shape functions of order k
[30]. On the other hand, l1 and l2, and m1 and m2 are called nodal shape functions because they satisfy all but one of the con-
ditions (4.18), respectively for k ¼ 1 and k ¼ 2. Separating the basis functions into internal and nodal ones facilitates the
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application of the natural boundary conditions at the free surface. For example, the forms (3.17) contribute only one non-
zero matrix element, while (3.10), (3.11), and (3.16) contribute two.

Remark 5. The k½k�n polynomials embody Hk-regularity in the sense that they are, by construction, kth antiderivatives of L2-
orthonormal polynomials. As a result, the principal forms of the continuous spaces (i.e. ðbDkv1; bDkv2Þ0;bX for v1, v2 2 Hk

0ðbXÞ)
are, in accordance with (4.11), represented by identity matrices, and do not exhibit an element-growth problem with p. By
virtue of (4.14) and (4.17), the corresponding matrices in the flng and fmng bases are, in each case, the direct sum of a 2� 2
matrix and an identity matrix, and therefore are also well behaved.

We obtain our basis polynomials for the discrete spaces VNu
u and VNb

b (4.1) by transporting k½2�n , ln, and mn from the refer-
ence interval bX to the problem domain X by means of the pushforward map Q 	. Introducing
Table 1
Propert

Problem

Film
Channe
/n :¼
Q 	mn film problems;
Q 	k

½2�
n channel problems;

�
ð4:19Þ
and vn :¼ Q 	ln, it follows from (4.1), in conjunction with Definitions 1–4, that VNu
u ¼ spanf/ng

Nu
n¼1 and VNb

b ¼ spanfvng
Nb
n¼1.

Then, our bases fwng
N
n¼1 are constructed as follows:

Definition 6 (Bases of the discrete solution spaces VN). In film and channel MHD problems we, respectively, set
wn :¼
ð/n; 0;0Þ; 1 6 n 6 Nu;

ð0;vn; 0Þ; Nu þ 1 6 n 6 Nu þ Nb;

ð0;0;1Þ; nþ Nu þ Nb þ 1;

8><>: wn :¼
ð/n;0Þ; 1 6 n 6 Nu;

ð0;vnÞ; Nu þ 1 6 n 6 Nu þ Nb:

�
ð4:20aÞ
Moreover, our basis vectors for inductionless film problems are
wn :¼
ð/n; 0Þ; 1 6 n 6 Nu;

ð0;1Þ; n ¼ Nu þ 1;

�
ð4:20bÞ
whereas for inductionless channel problems we simply have wn :¼ /n, where 1 6 n 6 Nu. Thus, for all v 2 VN one can write
v ¼

PN
n¼1½v�nwn, where
vT ¼

ðuT; bT; aÞ; film MHD problems;
ðuT; bTÞ; channel MHD problems;
ðuT; aÞ; inductionless film problems;
uT; inductionless channel problems;

8>>><>>>: ð4:21Þ
with u 2 CNu and b 2 CNb .

We note here that the procedure of constructing finite-dimensional solution spaces by transporting polynomial functions
from the reference element to the problem domain is extensively applied in hp-FEMs, with the difference that bX is mapped
to the mesh elements rather than the full domain X (e.g. [30]). Our method can thus be viewed as a single-element hp-FEM,
with h ¼ 1 (film problems) or h ¼ 2 (channel problems). One of the benefits of working with affine families of finite elements
is that the action of sesquilinear forms on basis-function pairs only needs to be computed on bX, as the corresponding values
on the mesh elements follow by scalings of the form (4.6). Even though this type of computational gain is not relevant to our
single mesh-element scheme, working with bX leads to a more unified treatment of channel and film problems, and also al-
lows for extensions of the method to problems defined over multiple domains (e.g. vertically-stacked layers of fluids). The
salient properties of the discrete solution spaces and their bases are displayed in Table 1.

Remark 7. In channel MHD problems it is also possible to apply the procedure described by Shen [10,11] to construct linear
combinations of Legendre polynomials that satisfy strongly (essentially) the Robin boundary conditions (2.4) for the
magnetic field. That approach would lead to well-conditioned and (for polynomial U and B) sparse stiffness and mass
matrices as well. However, since the boundary-value maps S1

i ðbÞ ¼ Dð~bðziÞÞ cannot be defined for all elements of H1, the trial
and test space for b would have to be an H2ðXÞ subspace, such as H2

aðXÞ :¼ fb 2 H2ðXÞ; S1
1ðbÞ � aS0

1ðbÞ ¼ S1
2ðbÞ þ aS0

2ðbÞ ¼ 0g.
In our treatment of channel MHD problems, we opted to consider that b is an element of H1ðXÞ and enforce the boundary
conditions weakly in the interests of commonality with our film-problem formulation.
ies of the discrete spaces VNu
u and VNb

b .

VNu
u VNb

b

Definition Basis p Definition Basis p

H2
1ðXf Þ \ PpðXf Þ fQ	mngNu

n¼1 Nu þ 1 H1ðXf Þ \ PpðXf Þ fQ	lng
Nb
n¼1 Nb � 1

l H2
0ðXcÞ \ PpðXcÞ fQ	k½2�n g

Nu
n¼1 Nu þ 3 H1ðXcÞ \ PpðXcÞ fQ	lng

Nb
n¼1 Nb � 1
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4.2. Structure of the discrete problems

We are now ready to write down explicit expressions for the stiffness and mass matrices in (4.3). With the choice of basis
functions in Definition 6, the free-stream contributions can be evaluated in closed form by means of the properties of the
Legendre polynomials. This is also the case for the U-dependent forms in problems with the Poiseuille velocity profile, since
(4.7b) and (4.7c) can be used to evaluate terms that are, respectively, linear and quadratic in the reference coordinate n. On
the other hand, the exponential terms in Hartmann profiles (2.12) preclude the derivation of closed-form expressions for the
integrals, and one has to resort to numerical quadrature instead. Here we pursue two alternative approaches, either of which
can be used to obtain highly accurate solutions of our stability problems.

The first approach is based on specialized Gauss quadrature rules, by means of which the exponentially weighted sesqui-
linear forms are computed exactly (modulo roundoff error). Numerical methods for orthogonal polynomials with exponen-
tial weight function over a finite interval, and the associated Gauss quadrature knots and weights, have been developed by
Mach [39]. As with many classes of orthogonal polynomials, the challenge is to compute the coefficients of the three-term
recurrence relation in a manner that is stable with the polynomial degree p. In the context of a study on optical scattering (a
problem of seemingly little relevance to spectral methods), Mach presents an iterative algorithm that yields the required
coefficients and, importantly, is stable at large p. By computing the eigenvalues and eigenvectors of the resulting Jacobian
matrix (e.g. [56]), it is therefore possible to obtain quadrature knots and weights suitable for the evaluation of polynomial
inner products weighted by expð�HzzÞ.

We also propose an alternative approach, which, following the widely used practice in spectral methods ([40] and ref-
erences therein), involves replacing the weighted sesquilinear forms by approximate ones derived from numerical quad-
rature rules (in the present case, LGL quadrature). Banerjee and Osborn [42] have shown that in elliptical eigenvalue
problems the incurred integration error does not affect the exponential p-convergence of the discrete solution, provided
that the eigenfunction being approximated is smooth, and the quadrature method is exact for polynomial integrands of
degree 2p� 1. To our knowledge, however, no corresponding theorem is available in the literature for the OS eigenvalue
problems studied here, and, although surely an interesting direction for future research, an investigation along those lines
lies beyond the scope of our work. Instead, in Section 5.2.2 we contend ourselves with a series of comparisons with the
exact-quadrature method supporting the adequacy of the 2p� 1 precision level in our schemes for free-surface MHD as
well.

4.2.1. Free-stream matrices
For the matrix representations of the U and B-independent forms it is convenient to introduce the square matrices T ½kd1d2 �

Hr
0

,
T ½kd1d2 �

H2
1

, and T ½kd1d2 �
H1 , whose size is equal to the number of basis polynomials (i.e. Nu and/or Nb). Using, as in (4.7), wk to denote

the power-law weight functions wkðnÞ ¼ nk, we set
T ½kd1d2 �
Hr

0

h i
mn

:¼ ðwk
cDd2 k½r�n ;

bDd1 k½r�m Þ0;bX ; ð4:22aÞ

T ½kd1d2 �
H2

1

� �
mn

:¼ ðwk
cDd2mn; bDd1mmÞ

0;bX ; T ½kd1d2 �
H1

h i
mn

:¼ ðwk
bDd2ln;

bDd1lmÞ0;bX : ð4:22bÞ
For our purposes it suffices to restrict attention to the cases where all of k, r, d1, and d2 are non-negative integers smaller than
three. Then, closed-form expressions for (4.22), which we quote in Appendices A.1 and A.2, can be evaluated with the help of
the orthogonality relations (4.11), (4.14) and (4.17). We note that several of the calculations can be performed in a hierar-
chical manner. Specifically, the property bDk½r�n ¼ k½r�1�

nþ1 (see Proposition 1) carries over to the corresponding matrices, where
the relation
T ½kd1d2 �
Hr

0

h i
mn
¼ T ½k;d1�1;d2�1�

Hr�1
0

� �
mþ1;nþ1

ð4:23Þ
applies for r; d1; d2 P 1. Moreover, by construction of the ln and mn polynomials (Propositions 2 and 3), we have
T ½kd1d2 �
H1

h i
mn
¼ T ½kd1d2 �

H1
0

� �
m�2;n�2

; T ½kd1d2 �
H2

1

� �
mn

¼ T ½kd1d2 �
H2

0

� �
m�2;n�2

; ð4:24Þ
where m;n P 3. That is, every N � N matrix T ½kd1d2 �
H2

1
contains a T ½kd1d2 �

H2
0

submatrix of size ðN � 2Þ � ðN � 2Þ, and similarly a
T ½kd1d2 �

H1
0

submatrix of size ðN � 2Þ � ðN � 2Þ is contained in every N � N matrix T ½kd1d2 �
H1 .

Remark 8. It follows from (4.7) that the matrices T ½kd1d2 �
Hr

0
are banded and sparse (see Table A.1). Moreover, their bands are not

fully populated, as every other diagonal consists of zeros. The bandwidth of T ½kd1d2�
Hr

0
is equal to 2r þ k� d1 � d2.

Remark 9. Let m and n, respectively, denote the row and column indices of T ½kd1d2 �
H1 and T ½kd1d2 �

H2
1

. Then, elements with m > 2
and n 6 2, or m 6 2 and n > 2, are the results of (weighted) inner products between nodal shape functions, respectively,
l1, l2 and m1, m2, and the internal shape functions l3, l4; . . . and m3, m4, . . .. It can be checked by explicit calculation (see
Appendix A.2) that the spectral leakage between the nodal and internal shape functions is small. Specifically, the quantities
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lH2
1

:¼max
m

T ½kd1d2 �
H2

1

� �
mn

–0; n 2 f1;2g
� 	

; lH1 :¼max
m

T ½kd1d2 �
H1

h i
mn

–0; n 2 f1;2g
n o

ð4:25Þ
are found to obey the relation
lH2
1
¼ lH1 ¼ 4þ k� d1 � d2: ð4:26Þ
Note that defining lH2
1

and lH1 as maxima over the matrix columns n leads to the same expression as (4.26).

In order to compute the matrix representations K ½0�uu, K ½0�bb , and K ½L�uu of the free-stream forms K½0�uu (3.8a), K
½0�
bb (3.8b), and K½L�uu

(3.23), we employ the collective notation
T ½kd1d2 �
uu :¼

T ½kd1d2 �
H2

1
; film problems;

T ½kd1d2 �
H2

0
; channel problems;

8<: ð4:27Þ
where T ½kd1d2 �
uu 2 RNu�Nu , and also write T ½kd1d2 �

bb :¼ T ½kd1d2 �
H1 2 RNb�Nb in both channel and film problems. As above, we denote ma-

trix rows and columns, respectively, by m and n. Then, making use of (4.6b), we obtain
K ½0�uu :¼ K½0�uuð/n;/mÞ

 �

¼ �j j�4T ½022�
uu þ 2a2j�2T ½011�

uu þ a4T ½000�
uu

� �
; ð4:28aÞ

K ½0�bb :¼ K
½0�
bbðvn;vmÞ

h i
¼ �j j�2T ½011�

bb þ a2T ½000�
bb

� �
; ð4:28bÞ
and
K ½L�uu :¼ K½L�uuð/n;/mÞ

 �

¼ �a2H2
x jT ½000�

uu þ iaHxHz T ½001�
uu � T ½010�

uu

� �
� H2

z j�1T ½011�
uu : ð4:29Þ
As for the mass forms Muu (3.18a) and Mbb (3.18b), these are represented by the matrices
Muu :¼ ½Muuð/n;/mÞ� ¼ Rej j�2T ½011�
uu þ a2T ½000�

uu

� �
; ð4:30aÞ

Mbb :¼ ½Mbbðvn;vmÞ� ¼ RmjT ½000�
bb : ð4:30bÞ
The maps (3.14), coupling the velocity and magnetic fields, can be treated by introducing T ½kd1d2 �
H1H2

0
2 RNb�Nu and

T ½kd1d2 �
H1H2

1
2 RNb�Nu , where
T ½kd1d2 �
H1H2

0

� �
mn

:¼ ðwk
cDd2 k½2�n ;

bDd1lmÞ0;bX ; T ½kd1d2 �
H1H2

1

� �
mn

:¼ ðwk
bDd2mn; bDd1lmÞ0;bX ; ð4:31Þ
and also T ½kd1d2 �
bu 2 RNb�Nu , with
T ½kd1d2 �
bu :¼

T ½kd1d2 �
H1H2

1
; film problems;

T ½kd1d2 �
H1H2

0
; channel problems:

8<: ð4:32Þ
Then, the matrices associated with K
½0�
ub and K

½0�
bu (3.14) are
K ½0�ub :¼ K
½0�
ubðvn;/mÞ

h i
¼ iaReA�1

x j j�2T ½011�
ub þ a2T ½000�

ub

� �
� ReA�1

z j�2T ½021�
ub þ a2T ½010�

ub

� �
; ð4:33aÞ

K ½0�bu :¼ K
½0�
buð/n;vmÞ

h i
¼ iaRmA�1

x jT ½000�
bu þ RmA�1

z T ½001�
bu ; ð4:33bÞ
where T ½kd1d2 �
ub :¼ ðT ½kd2d1 �

bu ÞT.
4.2.2. U and B-dependent matrices
We now examine the matrix representations of the forms K½U�uu and K

½U�
bb (3.9), and the maps K

½B�
ub and K

½B�
bu (3.15), all of which

involve inner products of Legendre polynomials with non-trivial weight functions.
Problems with the Poiseuille profile (2.14) can be treated using the matrices T ½kd1d2 �

uu and T ½kd1d2 �
bb established in Section 4.2.1.

First, we compute the action of the pullback map Q 	 (defined below (4.5)) on U,
ðQ 	UÞðnÞ ¼ 1� ðQðnÞÞ2 ¼: bU0 þ bU1nþ bU2n
2; ð4:34Þ
where bU0 ¼ 1� z2
0, bU1 ¼ �z0h, and bU2 ¼ �h2

=4. Specifically, in film problems (z1 ¼ �1, z2 ¼ 0) we have bU0 ¼ 3=4, bU1 ¼
�1=2, and bU2 ¼ �1=4, whereas in channel problems (z1 ¼ �1, z2 ¼ 1) the trivial result bU0 ¼ 1, bU1 ¼ 0, and bU2 ¼ �1 applies.
We then set
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K ½U�uu :¼ K½U�uu ð/n;/mÞ

 �

¼ �iaRej bU0 j�2T ½011�
uu þ a2T ½000�

uu

� �
þ bU1 j�2T ½111�

uu þ a2T ½100�
uu � j�2T ½010�

uu

� ��
þbU2 j�2T ½211�

uu þ a2T ½200�
uu � 2j�2T ½110�

uu

� ��
; ð4:35aÞ

K ½U�bb :¼ K
½B�
bbðvn;vmÞ

h i
¼ �iaRmj bU0T ½000�

bb þ bU1T ½100�
bb þ bU2T ½200�

bb

� �
; ð4:35bÞ
where K ½U�uu 2 CNu�Nu and K ½U�bb 2 CNb�Nb , respectively, represent K½U�uu and K
½U�
bb .

Turning to problems with Hartmann profiles (2.12), it is convenient to introduce the shorthand notation Hn ¼ Hzh=2,
sHn
ðnÞ :¼ sinhðHnnÞ, and cHn

ðnÞ :¼ coshðHnnÞ, which leads to the relations
ðQ 	UÞðnÞ ¼ bU0 � bUsðnÞ � bUcðnÞ; ðQ 	BÞðnÞ ¼ �bB0 � bB1nþ bBsðnÞ þ bBcðnÞ; ð4:36Þ
with bU0 ¼ coshðHzÞ=X, bB0 ¼ sinhðHzÞz0=ðHzXÞ, bB1 ¼ sinhðHzÞh=ð2HzXÞ, and
bUs ¼
sinhðHzz0ÞsHn

X
; bUc ¼

coshðHzz0ÞcHn

X
; bBs ¼

coshðHzz0ÞsHn

HzX
; bBc ¼

sinhðHzz0ÞcHn

HzX
: ð4:37Þ
We also use n½H�G;k 2 ð�1;1Þ and q̂½H�G;k, where H P 0 and k 2 f1;2; . . . ;Gg, to denote the quadrature knots and weights computed
via Mach’s algorithm [39], such that
Z 1

�1
dn eHnf ðnÞ ¼

XG

k¼1

q̂½H�G;kf ðn½H�G;kÞ ð4:38Þ
holds for any polynomial f 2 P2G�1ðbXÞ. Following the procedure outlined in Appendix A.4, Eq. (4.38) can be used to evaluate
the matrices S½dd1d2 �

uu 2 RNu�Nu , S½dd1d2 �
bb 2 RNb�Nb , and S½dd1d2 �

bu 2 RNb�Nu , where
S½dd1d2 �
uu

h i
mn

:¼
ððbDd bUsÞbDd2 k½2�n ;

bDd1 k½2�m Þ0;bX ; channel problems;

ððbDd bUsÞbDd2mn;cDd1mmÞ
0;bX ; film problems;

8<: ð4:39aÞ

S½dd1d2 �
bb

h i
mn

:¼ ððbDd bUsÞbDd2ln;
bDd1lmÞ0;bX ; ð4:39bÞ

S½dd1d2 �
bu

h i
mn

:¼
ððbDdbBsÞbDd2 k½2�n ;

bDd1lmÞ0;bX ; channel problems;

ððbDdbBsÞbDd2mn;cDd1lmÞ0;bX ; film problems:

8<: ð4:39cÞ
Similarly, one can compute the matrices C ½dd1d2 �
uu 2 RNu�Nu , C ½dd1d2 �

bb 2 RNb�Nb , and C ½dd1d2 �
ub 2 RNu�Nb , whose elements are given by

expressions analogous to (4.39), but with bUs and bBs, respectively, replaced by bUc and bBc . Then, K ½U�uu and K ½U�bb become
K ½U�uu ¼ �iaRej bU0 j�2T ½011�
Vu
þ a2T ½000�

Vu

� �
� j�2S½011�

Vu
þ a2S½000�

Vu
� j�2S½110�

Vu

� �
� j�2C ½011�

Vu
þ a2C ½000�

Vu
� j�2C ½110�

Vu

� �� �
; ð4:40aÞ

K ½U�bb ¼ �iaRmj bU0T ½000�
Vb
� S½000�

Vb
� S½000�

Vb

� �
: ð4:40bÞ
Also, the maps K
½B�
ub and K

½B�
bu (3.15) induce the matrices K ½B�ub 2 CNu�Nb and K ½B�bu 2 CNb�Nu given by
K ½B�ub :¼ K
½B�
ubðvn;/mÞ

h i
¼ iaReHzPm1=2j �bB0 j�2T ½011�

ub þ a2T ½000�
ub

� �
þ j�2S½011�

ub

�
þa2S½000�

ub � j�2S½110�
ub þ j�2C ½011�

ub þ a2C ½000�
ub � j�2C ½110�

ub � bB1 j�2T ½111�
ub þ a2T ½100�

ub � j�2T ½010�
ub

� ��
; ð4:41aÞ

K ½B�bu :¼ K
½B�
buð/n;vmÞ

h i
¼ iaRmHzPm1=2j �bB0T ½000�

bu � bB1T ½100�
bu þ S½000�

bu þ C ½000�
bu

� �
; ð4:41bÞ
where S½dd1d2 �
ub :¼ ðS½dd2d1 �

bu ÞT and C ½dd1d2 �
ub :¼ ðC ½dd2d1 �

bu ÞT.

Remark 10. Due to the non-polynomial nature of the Hartmann profiles (2.12), the matrices in (4.40) and (4.41) are fully
populated, and no simple closed form expressions exist for their evaluation (cf. (4.35)). However, by virtue of (4.38) no
quadrature errors are made in the computation of their elements.

The expressions presented thus far are restricted to the specific cases of the Poiseuille and Hartmann profiles. Oftentimes,
however, one is faced with the task of studying the stability properties of arbitrary steady-state profiles, and, although in
principle possible, deriving each time specialized quadrature schemes would be a laborious task. An alternative approach
is to replace the weighted forms and maps by approximate ones defined on the discrete solution spaces by means of the fol-
lowing procedure:

Let fG;k 2 ½z1; z2�, where k ¼ 0;1; . . . ;Gþ 1, f0 ¼ z1, and fGþ1 ¼ z2, be the abssicas of LGL quadrature with G interior points
on the interval X ¼ ½z1; z2�, and let .G;k be the corresponding weights (this type of quadrature is exact for polynomial inte-
grands of degree up to 2Gþ 1 [56]). Also, consider inner products of the form ðWf1; f2Þ0;X, where W stands for either U or
B, or their derivatives, and f1 and f2 are polynomials of degree p1 and p2, respectively. For all such inner products appearing
in K½U�uu , K

½U�
bb , K

½B�
ub, and K

½B�
bu set G P ðp1 þ p2Þ=2� 1 and make the substitution ðWf1; f2Þ0;X #

PGþ1
k¼0 .G;kWðfG;kÞf1ðfG;kÞf2ðfG;kÞ	. The
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resulting forms and maps, respectively denoted by eK½U�uu : VNu
u � VNu

u # C, eK½U�bb : VNb
b � VNb

b # C, eK½B�ub : VNb
b � VNu

u # C, andeK½B�bu : VNu
u � VNb

b # C, are
eK½U�uu ðu; ~uÞ :¼ �iaRe
XGuþ1

k¼0

.G;k UðfG;kÞðDuðfG;kÞD~uðfG;kÞ	 þ a2uðfG;kÞ~u	ðfG;kÞÞ � ðDUðfG;kÞÞuðfG;kÞD~uðfG;kÞ	
� 


; ð4:42aÞ

eK½U�bb ðb; ~bÞ :¼ �iaRm
XGbþ1

k¼0

.G;kUðfG;kÞbðfG;kÞ~bðfG;kÞ	; ð4:42bÞ
and
eK½B�ubðb; ~uÞ :¼ iaReHzPm1=2
XGubþ1

k¼0

.Gub ;k
BðfGub ;kÞðDbðfGub ;kÞD~uðfGub ;kÞ

	 þ a2bðfGub ;kÞ~uðfGub ;kÞ
	Þ � ðDBðfGub ;kÞÞbðfGub ;kÞD~uðfGub ;kÞ

	� 

;

ð4:43aÞ

eK½B�buðu; ~bÞ :¼ iaRmHzPm1=2
XGubþ1

k¼0

.Gub ;k
BðfGub ;kÞuðfGub ;kÞ~bðfGub ;kÞ

	
; ð4:43bÞ
where
Gu P pu � 1; Gb P pb � 1; Gub P ðpu þ pbÞ=2� 1; ð4:44Þ
and, as usual, pu and pb are the polynomial degrees of the velocity and magnetic-field bases (see Table 1). The sesquilinear
form eK : VN � VN

# C introduced in (4.2) then follows by replacing the exact forms and maps in (3.6a) with the correspond-
ing approximate ones defined in (4.42) and (4.43).

Remark 11. Our choice of precision in (4.44) is motivated by Banerjee and Osborn’s [42] result that in finite-element
methods for elliptical eigenvalue problems it suffices to use quadrature schemes that are exact for polynomial integrands
of degree 2p� 1, where p is the degree of the FEM basis. Here we do not pursue a formal proof of the adequacy of
(4.44), but the numerical tests in Section 5.2.2 demonstrate that eigenvalues computed using the smallest quadrature
precision consistent with it converge in a virtually identical manner with those obtained via the exact quadrature
scheme.

For the purpose of evaluating the matrices representing eK½U�uu , eK½U�bb , eK½B�ub, and eK½B�bu, which we again denote by K ½U�uu , K ½U�bb , K ½B�ub,
and K ½B�bu, we introduce the differentiation matrices D½d�u 2 RGu�Nu , D½d�b 2 RGb�Nb , D0½d�u 2 RGub�Nu , and D0½d�b 2 RGub�Nb with elements
D½d�u

h i
kn

:¼
bDdmnðf̂Gu ;kÞ; film problems;bDdk½2�n ðf̂Gu ;kÞ; channel problems;

(
D0½d�u

h i
kn

:¼
bDdmnðf̂Gub ;kÞ; film problems;bDdk½2�n ðf̂Gub ;kÞ; channel problems;

(
ð4:45aÞ

D½d�b

h i
kn

:¼ bDdlnðf̂Gb ;kÞ; D0½d�b

h i
kn

:¼ bDdlnðf̂Gub ;kÞ; ð4:45bÞ
where f̂G;k 2 ½�1;1� for k 2 f0;1; . . . ;Gþ 1g are LGL quadrature knots on the reference interval bX. We also make use of the
G� G diagonal weight matrices .̂G, whose entries ½.̂G�kk ¼ .̂G;k are equal to the quadrature weights associated with the knots
f̂G;k (note that f̂G;k ¼ Q�1ðfG;kÞ and .̂G;k ¼ 2.G;k=h), and the diagonal matrices U ½d�G and B½d�G , where ½U ½d�G �kk :¼ bDdQ 	ðUÞðf̂G;kÞ and
½B½d�G �kk :¼ bDdQ 	ðBÞðf̂G;kÞ. We then obtain
K ½U�uu :¼ eK½U�uu ð/n;/mÞ
h i

¼ �iaRej j�2ðD½1�u Þ
T
.̂Gu U ½0�Gu

D½1�u þ a2ðD½0�u Þ
T
.̂Gu U ½0�Gu

D½0�u � j�2ðD½1�u Þ
T
.̂Gu U ½1�Gu

D½0�u

� �
; ð4:46aÞ

K ½U�bb :¼ eK½U�bb ðvn;vmÞ
h i

¼ �iaRmjðD½0�b Þ
T
.̂Gb

U ½0�Gb
D½0�b ; ð4:46bÞ
and
K ½B�ub :¼ eK½B�ubðvn;/mÞ
h i

¼ iaReHzPm1=2j j�2ðD0½1�u Þ
T
.̂Gub

B½0�Gub
D½1�b þ a2ðD0½0�u Þ

T
.̂Gub

B½0�Gub
D½0�b � j�2ðD0½1�u Þ

T
.̂Gub

B½1�Gub
D0½0�b

� �
; ð4:47aÞ

K ½B�bu :¼ eK½B�buð/n;vmÞ
h i

¼ iaRmHzPm1=2jðD0½0�b Þ
T
.̂Gub

B½0�Gub
D0½0�u : ð4:47bÞ
Remark 12. In 64-bit arithmetic the numerators and denominators in (2.12) overflow at around Hz ¼ lnð21023Þ ’ 700. This,
in conjunction with the fact that neither U nor B have Taylor expansions about Hz ¼ 1 valid for all z 2 ½�1;1�, renders the
evaluation of the U and B matrices at large Hz somewhat problematic. A practical workaround is to code the internal
calculations for U and B in REAL*16 (128-bit) arithmetic, supported by a number of Fortran compilers (e.g. the Intel and NAG
compilers), pushing the occurrence of the overflow to Hz ¼ lnð216;383Þ ’ 11;000. Note that a similar issue arises with the
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exact-quadrature method, but in that case performing the internal computations with REAL*16 data types is not as
straightforward (see Remark 16 in Appendix A.4).
4.2.3. Boundary terms
Boundary terms, namely (3.10), (3.11), (3.16), (3.17), and (3.24), are the outcome of the natural imposition of the stress

and kinematic conditions at the free surface, and the insulating boundary conditions at the wall and the free surface. One of
the benefits of working in the flng

Nb
n¼1 and fmngNu

n¼1 bases, consisting of internal and nodal shape functions, is that each of the
boundary terms contributes at most two, p-independent, non-zero matrix elements in the stiffness matrix K . In conse-
quence, its sparsity and conditioning are not affected by the boundary conditions. Specifically, K½S�uu, K

½I�
bb, and K

½S�
ub are repre-

sented by the matrices K ½S�uu 2 RNu�Nu , K ½I�bb 2 RNb�Nb , and K ½S�ub 2 CNu�Nb , where, as follows from (4.13) and (4.16),
K ½S�uu :¼ K½S�uuð/n;/mÞ

 �

¼ �j�1a2ðdm1dn2 þ dm2dn1Þ; ð4:48aÞ

K ½I�bb :¼ K
½I�
bbðvn;vmÞ

h i
¼ �aðdm1dn1 þ dm2dn2Þ; ð4:48bÞ

K ½S�ub :¼ K
½S�
ubðvn;/mÞ

h i
¼ aRe iaðA�1

x þ A�1
z RmBð0ÞÞdm1 � j�1A�1

z dm2

� �
dn2: ð4:48cÞ
In addition, the maps Kua, Kba, and Kau, respectively, give rise to the column vectors Kua 2 CNu and Kba 2 CNb , and the row vec-
tor KT

au 2 RNu , where
Kua½ �n :¼ Kuað1;/nÞ ¼ a2 �GaRe�1 � a2Ca�1 þ 2iaDUð0Þ
� �

dn1 þ iaj�1 D2Uð0Þ þ H2
z DBð0Þ

� �
dn2; ð4:49aÞ

½Kba�n :¼ Kbað1;vnÞ ¼ iaA�1
z RmDBð0Þdn2; ð4:49bÞ

½Kau�n :¼ Kauð/n;1Þ ¼ d1n: ð4:49cÞ
In inductionless problems the column vector corresponding to (3.24) is given by (4.49a) with DBð0Þ formally set to zero.

4.2.4. Constructing the stiffness and mass matrices
Eq. (4.4), according to which the stiffness and mass matrices are to be computed, has different instantiations, depending

on the forms K and M of the variational problem at hand (Definitions 1–4) and the corresponding choice of basis functions
(Definition 6). The matrices introduced in Sections 4.2.1, 4.2.2 and 4.2.3 serve as building blocks, out of which K and M can
be composed in a modular manner. A number of these matrix ‘modules’ are common among different types of problems (e.g.
K ½0�uu (4.28a) and Muu (4.30a) are present in all film and channel problems), which is convenient for implementation purposes.

In film MHD problems, K and M have N ¼ Nu þ Nb þ 1 rows and columns, and are given by
ð4:50Þ
Here the submatrices with uu and bb indices are, respectively, dimensioned Nu � Nu and Nb � Nb.Among them, the U-inde-
pendent matrices, K ½0�uu, K ½S�uu, K ½0�bb , K ½I�bb, Muu, and Mbb, are given by Eqs.(4.28), (4.48a), (4.48b), and (4.30).Also, the submatrix K ½U�uu

is to be evaluated using either of (4.35a), (4.40a), and (4.46a), depending on whether the velocity profile is Poiseuille, Hart-
mann (treated by means of the exact-quadrature method), or LGL quadrature is employed.Similarly, K ½U�bb can be computed by
means of either (4.35b), (4.40b) or (4.46b).The submatrices indexed by ub and bu have dimension Nu � Nb and Nb � Nu,
respectively.The B-independent ones, K ½0�ub, K ½S�ub, and K ½0�bu, follow from (4.33) and (4.48c), while for those that depend on the
induced magnetic field, namely K ½B�ub and K ½B�bu, there exist options to use exact quadrature (4.41) or LGL quadrature (4.47).Fi-
nally, the column vectors Kua and Kba, respectively, of size Nu and Nb, and the row vectorKT

au of size Nu are given by (4.49). In
inductionless film problems (Definition 3), the magnetic-field degrees of freedom are not present, and K and B are replaced
by the ðNu þ 1Þ � ðNu þ 1Þ matrices
ð4:51Þ
where, aside from K ½L�uu, which is given by (4.29), and Kua (obtained from (4.49a) with DBð0Þ set to zero), the submatrices have
the same definitions as in (4.50).
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In the interests of brevity, we do not write down explicit expressions for the stiffness and mass matrices in channel prob-
lems. We note, however, that they have the same structure as the corresponding film-problem matrices, but with the rows
and columns representing the free-surface removed, and all boundary terms involving the velocity (K ½S�uu, and K ½S�ub) set to zero.

Remark 13. The mass matrices in (4.50) and (4.51), as well as in the corresponding channel problems, are symmetric
positive definite (SPD). Rewriting (4.3) in the form cMKv ¼ cK Mv , where cK=cM ¼ c (the QZ algorithm [52] actually solves
this version of the problem), the non-singularity of M guarantees that cM–0 (i.e. c is finite). In fact, as can be checked from
(3.6b), M is SPD for all choices of discrete bases. In tau methods, however, M can be singular. Dawkins et al. [29] have shown
that in the Legendre tau discretization of a fourth-order eigenvalue problem (structurally similar to the OS equation) M has a
non-trivial nullspace, and, as a result, the discrete problem contains an infinite eigenvalue. Moreover, the Chebyshev tau
formulation of the same problem was found to contain spurious eigenvalues, even though in that case M is non-singular.
Treating the Legendre and Chebyshev tau methods as members of the one-parameter family of Gegenbauer tau methods, the
spurious eigenvalues in the Chebyshev case were interpreted as perturbations of the infinite eigenvalues in the Legendre
one. As KMS, we found no evidence of spurious eigenvalues in any of the schemes presented here, which, in light of the
analysis by Dawkins et al., is likely due to the fact that the variational formulation described in Section 3 leads to non-
singular mass matrices irrespective of the choice of basis.

Remark 14. The sparsity of K and M in problems with polynomial steady-state profiles enables the efficient use of iterative
solvers. A number of implementations (e.g. the ARPACK library [54], which is also available in Matlab) provide the option to
specifically seek the eigenvalues with the largest real parts, which are oftentimes the ones of interest. In practice, however,
we observed that these are particularly hard eigenvalues to compute, with the algorithm frequently failing to achieve con-
vergence. Instead, we found that a more feasible strategy is to search for eigenvalues with the smallest absolute value. Due to
the predominance of highly damped modes in the spectrum (i.e. eigenvalues with large jcj but small ReðcÞ), the eigenvalue
with the largest real part often happens to be among the smallest absolute value ones. This approach was used to compute
the eigenvalues for p ¼ Oð103Þ in Fig. 11.
5. Results and discussion

In this section we present a series of test calculations aiming to validate our Galerkin schemes, and illustrate the basic
properties of our stability problems. First, in Section 5.1 we study the eigenvalue spectra of representative film and channel
problems. Various aspects of numerical accuracy are examined in Section 5.2. In Section 5.3 we test the consistency of our
schemes against energy conservation in free-surface MHD, and the time evolution of small-amplitude perturbations in non-
linear simulations. The critical Reynolds number calculations in Section 5.4 is our final topic. Aside from the nonlinear sim-
ulations in Section 5.3, all numerical work was carried out using a Matlab code, available upon request from the corresponding
author. We remark that in order to facilitate comparison with relevant references in the literature, we mainly express our
computed eigenvalues in terms of the complex phase velocity c ¼ ic=a, rather than the complex growth rate c. As stated in
Section 2.1, in the former representation a mode is unstable if C :¼ aImðcÞ > 0, while C :¼ ReðcÞ is the modal phase velocity.
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Fig. 3. Spectrum of a non-MHD channel problem with the Poiseuille velocity profile for Re ¼ 104, a ¼ 1, and pu ¼ 500, showing the A, P, and S branches. �
and � markers respectively correspond to even and odd modes. The even mode marked in boldface is unstable.
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5.1. Eigenvalue spectra of selected problems

5.1.1. Non-MHD Problems
One of the most extensively studied problems in hydrodynamic stability is non-MHD channel flow with the Poiseuille

velocity profile (e.g. [8,9,16,17,26,57]). In the high Reynolds number regime, the spectrum of the OS operator forms three
branches in the complex plane, conventionally labeled A, P, and S [37]. The branches are shown in the numerical spectrum
in Fig. 3, obtained at Re ¼ 104 and a ¼ 1 by solving the matrix eigenproblem (4.3) derived from Definition 4 (with
Hx ¼ Hz ¼ 0). In accordance with Table 1, uðzÞ is expanded in the fk½2�n g

Nu
n¼1 basis, where for the present calculation the poly-

nomial degree is set at pu ¼ Nu þ 3 ¼ 500. Due to the reflection symmetry of (2.2) and (2.3) with respect to z, the eigenfunc-
tions fall into even (uð�zÞ ¼ uðzÞ) and odd (uð�zÞ ¼ �uðzÞ) symmetry classes. The S branch contains a countably infinite set of
modes, whose phase velocity is asymptotically equal (at large and negative ImðcÞ) to the mean basic flow hUi ¼ 2=3 (2.13).
On the other hand, the A and P branches contain a finite set of modes, respectively with 0 < C < hUi and hUi < C < 1. The P
modes come into nearly degenerate even and odd pairs. As noted by Orszag [16], this near degeneracy is a genuine property
of the spectrum, and does not disappear by increasing the spectral order. While all of the P modes are stable, the A branch
contains a single unstable mode of even symmetry. This instability is of the critical-layer type [26]: at sufficiently high Rey-
nolds numbers, and over a suitable range of wavenumbers, the energy transfer from the basic flow to the mode (the Reynolds
stress (2.16a)) exceeds the viscous dissipation, and as a result its growth rate becomes positive.

Table B.1 lists in order of decreasing ImðcÞ the first 33 eigenvalues plotted in Fig. 3. This calculation has previously been
performed by Kirchner (see Table VII in [8]) using the same Galerkin scheme as in the present work, so the two sets of eigen-
values should be in very close agreement. A comparison (see also the underlined digits in Table B.1) reveals that for modes at
the top end of the spectrum the relative agreement is of order 10�15, i.e. close to machine precision. However, descending the
spectrum, the number of decimal digits for which the calculations agree exhibits a diminishing trend, culminating to an
Oð10�9Þ relative difference for Mode 33. This discrepancy is likely due to roundoff sensitivity in the computed eigenvalues
close to the intersection point between the A, P and S branches, which is known to increase steeply with Re [38]. In our
schemes, machine roundoff in double-precision (64 bit) arithmetic already leads to relative errors of order unity at
Re � 5� 104 (see Section 5.2.3 below). Therefore, the observed six-digit loss in the agreement between Kirchner’s eigen-
values and ours is not unreasonable at Re ¼ 104, especially for modes like A10, which lies particularly close to the intersection
point (ImðcÞ ¼ 0:637 ’ 2=3).

In film problems, again with the Poiseuille profile, the eigenproblem (4.3) is derived from Definition 3 (with Hx ¼ Hz ¼ 0),
and, in accordance with Table 1, the velocity eigenfunction is expressed in terms of the mn polynomials. Our nominal spec-
ification of the free-surface parameters (which will also be used in the MHD calculations below) is Ca ¼ 0:07 and
Ga ¼ 8:3� 107, corresponding to a typical liquid-metal film of thickness 0:01 m flowing with a 5 m s�1 velocity under the
influence of a terrestrial gravitational field [12]. Setting a ¼ 1 and pu ¼ Nu þ 1 ¼ 500, we evaluate the spectra at Reynolds
numbers Re ¼ 104 and Re ¼ 3� 104. The resulting eigenvalues are displayed in Fig. 4 and tabulated in Table B.2, which also
lists the modal free-surface energy (2.15c). As with channel problems, the spectra exhibit the A, P, and S branches. In addi-
tion, they contain two modes associated with the free surface, labeled U and F. Mode F is a ‘fast’ downstream-propagating
surface wave, whose phase velocity is always greater than the basic velocity at the free surface (ReðcÞ > 1). It is unstable for
Re > ð5Ga=8Þ1=2 [12,58,59], provided that a is smaller than some upper bound. This so-called soft instability is present in
Fig. 4(b). Mode U is an upstream-propagating mode (ReðcÞ < 0), which is part of the spectrum at sufficiently small Reynolds
numbers (e.g. Fig. 4(a)). For Re K 103 (and a ¼ 1) its eigenfunction has the characteristic exponential-like profile of a surface
wave. However, as Re grows its phase velocity increases, because the mode tends to be advected downstream by the basic
flow. At the same time, its eigenfunction develops the characteristics of an internal (shear) wave, such as well-defined
boundary and internal friction layers. Eventually, the eigenvalue crosses the ReðcÞ ¼ 0 axis and merges with the A branch,
taking over the role of Mode A1 in channel flow (for this reason, in Table B.2 Mode U is also labeled A1). In particular, pro-
vided that the Reynolds number exceeds some critical value, it experiences an instability very similar to that in channel flow,
oftentimes referred to as the hard instability [18]. The spectra in the top and bottom panels of Fig. 4, respectively, lie below
and above the hard-instability threshold. As can be checked from Table B.2, only a relatively small number of modes carry
appreciable free-surface energy. Apart from the Mode F, and the upper A and P family modes, for which Ea=E � 0:5, the
remaining modes are internal, with Ea=E K 10�3.

5.1.2. Problems in the inductionless limit
The simplest version of MHD is the inductionless approximation (2.2), whose weak formulation is stated in Definitions 3

and 4, respectively, for film and channel problems. Compared to the non-MHD baseline scenario, the steady-state magnetic
field, parameterized by the streamwise and flow-normal Hartmann numbers Hx and Hz, affects the stability of the flow both
at the level of the basic state, as well as the perturbations. In the former case, the flow-normal component of the field leads to
the establishment of the Hartmann velocity profile (2.12), which differs substantially from the Poiseuille one, even at mod-
erate Hartmann numbers (see Fig. 2). The departure from the parabolic profile affects the Reynolds stress, which is the driver
of critical-layer instabilities. The magnetic field also acts at the level of the perturbations by way of electrical currents in-
duced by the perturbed fluid motion within the field. These induced currents set up Lorentz forces, which, in accordance
with Lentz’s law, always tend to dampen the flow. Moreover, they modify the velocity distribution of the perturbations,
changing in turn the Reynolds stress and/or viscous dissipation. It is generally known, both on theoretical grounds
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[60,61], as well as from numerical calculations [21,24], that in channel problems the combined outcome of these effects is
strongly stabilizing. In film problems, however, the existence of a resonance between the velocity and surface degrees of
freedom causes Mode F to deviate from that behavior [12].

We first consider film problems with a flow-normal magnetic field (Hx ¼ 0). Fig. 5 displays the eigenvalues computed at
Hz ¼ 14 and 100, with all other spectral and flow parameters equal to those in Fig. 4(b). Numerical results obtained using both
exact and LGL quadrature for the computation of the stiffness matrix K (respectively, (4.40a) and (4.42a)) are listed in Table
B.3. The maximum relative difference between the two eigenvalue sets is of order 10�11 (the corresponding mode is P22 for
Hz ¼ 14), becoming as small as Oð10�16Þ for Mode P3. We note that the agreement between the lower modes does not improve
by increasing pu. As in our previous comparison of the eigenvalues of plane Poiseuille flow (Table B.1) with the corresponding
calculations by Kirchner [8], the numerical convergence of the lower modes appears to be over fewer significant digits than
the least stable ones. Nonetheless, our results demonstrate that the LGL quadrature scheme is a very viable alternative to the
exact one, especially in light of its flexibility to treat arbitrary analytic velocity profiles (see also Section 5.2.2 ahead).

Comparing Fig. 5 to Fig. 4(b) illustrates the following basic aspects of the magnetic field’s influence on the eigenvalues.
First, as Hz increases the A branch collapses. That is, the eigenvalues move towards the intersection point between the P and
S branches, eventually experiencing what qualitatively appears as an inelastic collision with the S branch. In the process,
Mode A1 (the hard mode) crosses the ImðcÞ ¼ 0 axis, i.e. it becomes stable. The real part of the S family eigenvalues remains
(asymptotically) equal to the average value of the velocity profile, and moves from 2=3 towards 1, in accordance with (2.13).
At the same time, the P branch becomes progressively aligned with the S branch. For sufficiently small values of Hz, including
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the Hz ¼ 14 example in Table B.3, the P modes are somewhat less stable than in the non-MHD case (cf. Table B.2), but never
cross the ImðcÞ ¼ 0 axis. As for the originally unstable F mode, this is also stabilized once Hz exceeds some critical value (the
spectra in Fig. 5 and Table B.3 are evaluated past that threshold).

The behavior outlined above is encountered at moderate Hz, and is mainly due to the formation of the Hartmann velocity
profile. As discussed in Ref. [12], when the magnetic field is sufficiently strong, Lorentz damping causes the decay rate jReðcÞj
of the A, P, and S modes (including the channel-flow modes) to increase quadratically with Hz. Mode F, however, enters a
phase of asymptotically neutral stability, with its decay rate following an inverse quadratic power law of the Hartmann num-
ber. In the Hz ¼ 100 problem in Fig. 5 and Table B.3, the decay rate jCj ¼ 0:12742 of Mode F already is substantially smaller
than that of the Lorentz-damped P and S modes (jCjP 0:31048). A single A mode is present in the spectrum with compa-
rable decay rate jCj ¼ 0:13076, but at larger Hartmann numbers (not shown here) it too becomes suppressed. Eventually,
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Mode F remains the only mode with small decay rate. As a result, film and channel problems differ qualitatively in that the
spectra of the former cannot be damped by arbitrarily large amounts solely by applying a background magnetic field.

The more general case with oblique external magnetic field (i.e. Hx and Hz both non-zero), is especially interesting in the
context of channel problems because, as can be checked from (2.2), the reflection symmetry with respect to z is no longer
present. As shown in Fig. 6, the near-degeneracy between the even and odd P-family modes is broken, and the resulting
sub-branches assume a distinctive curved shape. In general, the streamwise Hartmann number required to cause a compa-
rable change in the eigenvalues is significantly larger than the corresponding flow-normal one. It is for this reason than in
Fig. 6 we consider a magnetic field oriented at only 1� with respect to the streamwise direction, but sufficiently strong so that
Hz is equal to the one used in Fig. 5(b). In film problems, where no nearly degenerate P mode pairs exist to begin with, the
oblique field still causes the P branch to adopt a qualitatively similar curved shape.

5.1.3. Film MHD problems
We now relax the inductionless approximation made in the preceding section and consider film MHD problems, defined

variationally in Definition 1, and discretized using the flng
Nb
n¼1 and fmngNu

n¼1 bases for the magnetic-field and velocity eigen-
functions (see Table 1). Throughout this section we work at polynomial degrees pu ¼ pb ¼ 500. Moreover, we compute the U
and B-dependent terms in the stiffness matrix K using the exact quadrature scheme, i.e. (4.40) and (4.41), although accurate
results can also be obtained by means of the LGL method (Eqs. (4.46) and (4.47)).

Noting that the limit Pm& 0, at which Eqs. (2.1) reduce to (2.2) (under the proviso that Hx and Hz are non-negligible), is a
singular limit of the coupled OS and induction equations, one can deduce that certain MHD modes, which we refer to as mag-
netic modes, are disconnected from the inductionless spectra. These are to be distinguished from hydrodynamic modes, that
are regular as Pm& 0. Whenever Pm is of order unity, magnetic modes are expected to be present in the portion of the com-
plex plane with ImðcÞ > �1, irrespective of the background magnetic-field strength. In fact, they stand out particularly
clearly in spectra evaluated at Hx ¼ Hz ¼ 0, such as the one depicted in Fig. 7 for a Pm ¼ 1:2 problem. In this special case with
zero background field, the maps Kub (3.12a), Kbu (3.12b), and Kba (3.17b) vanish, and the magnetic modes are independent of
the hydrodynamic ones. The latter have zero magnetic-field eigenfunction and retain the same velocity eigenfunction and
free-surface amplitude as in the non-MHD case, whereas for the former u and a are zero and b is non-vanishing. The mag-
netic modes form a three-branch structure as well, whose branches we label Am, Pm, and Sm. The magnetic S branch coin-
cides with the hydrodynamic one, and the Pm branch lies close, but does not coincide, with P. The Am branch forms a nearly
straight line that interpolates between the hydrodynamic A modes. Numerical values for the complex phase velocities of the
25 least stable magnetic modes are tabulated in Table B.5.

When the steady-state magnetic field is non-zero, Kbu, Kub, and Kba couple the hydrodynamic and magnetic modes, gen-
erally resulting in the formation of multiple eigenvalue branches. This type of behavior is illustrated in Figs. 8 and 9 for film
MHD problems at Pm ¼ 1:2, respectively, with flow-normal and oblique external magnetic field. Tables B.6 and B.7 list the
corresponding complex phase velocities and energies. As shown in the Hz ¼ 14 example in Fig. 8, instead of leading to the
collapse of the A branch and alignment of the P and S branches observed in the inductionless limit (Fig. 5), the magnetic field
causes the nearly coincident three-branch structures at Hz ¼ 0 to split into two distinct ones, each of which is populated by
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both hydrodynamic and magnetic modes. Moreover, an unstable magnetic mode (M1) is now present in the spectrum. This
mode, which also arises in channel problems, signifies that at sufficiently high Pm the magnetic field can destabilize an orig-
inally stable flow. As Hz increases above 14, the tails of the branches split again, resulting to the intricate eigenvalue distri-
bution observed at Hz ¼ 100, which, apart from Mode M1, is nearly symmetric about ReðcÞ ¼ 1. The spectrum with oblique
external magnetic field (Fig. 9) exhibits multiple branches as well, and additionally contains a second unstable magnetic
mode (M2). In both examples with Hz ¼ 100, Mode M2 stands out in that its kinetic energy is significantly smaller
(Eu=E ¼ 0:0019130 and Eu=E ¼ 0:0025020 for Hx ¼ 0 and Hx ¼ Hz= tanð1�Þ, respectively) than the Eu=E ¼ Oð10�1Þ values of
the remaining modes.

In the Pm K 10�4 regime of laboratory fluids, the spectra of film MHD problems differ from those in the inductionless limit
in (i) the presence of magnetic modes with ImðcÞ > �1, and (ii) an interaction between Mode F and the P modes, accompa-
nied by an instability. These two kinds of discrepancy are shown in Fig. 10 and Table B.8, where Pm ¼ 10�4 and inductionless
spectra have been evaluated for Re ¼ 106, a ¼ 0:01, ðHx;HzÞ ¼ ð0;10Þ, Ga ¼ 8:3� 107, and Ca ¼ 0:07. To begin, Fig. 10(a)
exhibits an isolated, stable magnetic mode (labeled M), which, due to the singular nature of the limit Pm& 0, is entirely ab-
sent from Fig. 10(b). Its magnetic energy Eb=E ¼ 0:28191 is the largest of the modes with ImðcÞP �1. As further calculations
indicate [12], Mode M exists predominantly for small to moderate Hartmann numbers. At larger Hartmann numbers it is
replaced by a pair of traveling Alfvén waves, one of which undergoes an instability when the Alfvén number Az of the flow
is sufficiently large. Standing-wave analogs of the traveling modes are present in channel problems for comparable values of
Pm, but these modes do not become unstable.

The second notable difference between panels (a) and (b) of Fig. 10 is the presence of an unstable P mode (hUi < ReðcÞ < 1)
in the Pm ¼ 10�4 spectrum, when all of the modes of the inductionless problem are stable. The unstable P mode can be con-
tinuously traced to Mode F when Pm is allowed to decrease to zero, and likewise Mode F at Pm ¼ 10�4 originates from Mode
P1 in the inductionless limit. This type of exchange of the modes’ physical character, oftentimes accompanied by instabilities,
is common in systems with interacting degrees of freedom [62]. As discussed in more detail in [12], the coupling between
Modes F and P1 is caused by the induced magnetic field Pm1=2HzB, which vanishes in the inductionless limit. The magnetic
origin of the coupling between these modes is manifested by their large magnetic energy, which at 0.20237E and 0.21528E
(respectively, for Mode P1 and Mode F) is more than an order of magnitude greater than the Eb=E < 0:0064 values for the
remaining modes with ImðcÞ > �1 outside Mode M. For these latter modes, the relative error in c of the inductionless
approximation is less than 0.0014.

The markedly different types of behavior we have encountered so far are a testament that in its full generality the free-
surface MHD stability problem is a complex one. One of its major aspects that we have not touched upon, and which we
defer to future work, is the role of the induced magnetic field B on the instabilities and the formation of multiple eigenvalue
branches when Pm is of order unity. While we do not present these calculations here, setting B to zero while keeping all other
parameters fixed yields spectra that neither contain unstable magnetic modes, nor exhibit the multiple-branch structures.
Using the approach employed in [12] for low-Pm fluids, it would be interesting to investigate the energy-transfer mecha-
nisms associated with B, and the manner in which they contribute to the magnetic-mode instabilities in Pm ¼ Oð1Þ flows.
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5.2. Convergence and stability

The issue of convergence and stability of spectral schemes is a very broad one, and can be approached from various an-
gles. As a minimum, certain analytical criteria must be satisfied (e.g. Section 2.2 in [41]). That is, given a well-posed varia-
tional formulation of the problem at hand, the discrete solution must converge, under some suitable norm, to the exact one
as the dimension N tends to infinity. Furthermore, the discretization error must be bounded by an N-independent constant
(stability). Among the relevant literature for eigenvalue problems (see [43] and references therein) of particular importance
to us is the work of Melenk et al. [9], who showed that the Galerkin method used for what we call here non-MHD channel
problems is spectrally convergent. Generalizing the results in [9] to MHD is of course an essential prerequisite if our schemes
are to be deemed well-posed. In what follows, however, instead of pursuing that program we adopt a less rigorous approach
and limit ourselves to more practical aspects of convergence and stability. That is, implicitly assuming that our schemes con-
vergence in the analytical sense, we perform test calculations that aim to probe their behavior in actual computing environ-
ments, emphasizing on issues related to finite arithmetic precision.

5.2.1. p-Convergence
In shear-flow stability problems at large Reynolds numbers both truncation and roundoff errors come into play, and in

certain cases addressing them leads to self-conflicting situations. On the one hand, in order to resolve the small length scales
that develop (the boundary and internal friction layers) it is necessary to work at large spectral orders (p J 500). Otherwise,
the truncation error is significant. However, unless the basis polynomials are carefully chosen, the matrix representations of
high-order differential operators (such as the D4 operator in the OS equation) become ill conditioned as p increases, causing a
growth in roundoff error to the point where it exceeds truncation error. It is precisely here that lies a major strength of Shen’s
technique [10,11], employed by KMS for plane Poiseuille flow and in the present work for free-surface MHD: Because the
discrete bases consist of linear combinations of orthogonal polynomials (in this case Legendre polynomials), constructed
so as to reflect the order of the Sobolev spaces of the underlying continuous problem (see Remark 5), roundoff sensitivity
essentially becomes independent of p.

As a concrete illustration, we have experimented with an alternative implementation of our Galerkin schemes for non-
MHD channel flow, where instead of the k½2�n polynomials prescribed in Table 1, the basis polynomials of VNu

u are Lagrange
interpolants on LGL quadrature knots of order pþ 1, suitably modified to meet the essential boundary conditions (2.3). Basis
polynomials of this type, hereafter denoted by hn, are widely used in pseudospectral and spectral-element methods [41,63].
However, they lack the orthogonality properties appropriate to H2

0.

Remark 15. A prominent manifestation of non-orthogonality in the fhng basis is matrix coefficient growth with p. We
observed that the 1-norm of matrices with elements ðDd2 ðhnÞ; Dd1 ðhmÞÞ0;X scales as pd1þd2 . In contrast, all of the
corresponding matrices T ½kd1d2� evaluated in the fk½r�n g, flng and fmng bases (see Appendix A) have p-independent1-norms.
Recalling that the 1-norm of a matrix A is equal to maxm

P
njAmnj, the latter is a direct consequence of the orthogonality

properties of the Legendre polynomials and the choice of normalization, which ensure that T ½kd1d2� (i) are banded, (ii) their
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bandwidths are p-independent, and (iii) apart from those corresponding to the nodal shape functions, the absolute values of
the matrix coefficients either remain constant or decrease going down the non-zero diagonals.

The ill behaved stiffness and mass matrices arising in the Lagrange-interpolant basis lead to a rapid increase of the
scheme’s roundoff sensitivity with p. The resulting degradation in the accuracy of the computed eigenvalues is immediately
obvious in Fig. 11, which shows the relative convergence of the least-stable eigenvalue at ðRe;aÞ ¼ ð104;1Þ as a function of
the polynomial degree p, obtained via the fhng and fk½2�n g bases. In both cases, convergence has been computed relative to a
reference value obtained by means of the fk½2�n g basis at high polynomial degree (p ¼ 5000). At small to moderate values of p
the results are essentially identical, and clearly display the exponential decrease in truncation error typical of spectral meth-
ods. However, in the case of the eigenvalue computed using the fhng basis the exponential convergence trend halts abruptly
at around p ¼ 50, at which point the roundoff error caused by the ill conditioned stiffness and mass matrices becomes dom-
inant. As p further increases, the eigenvalue is seen to progressively diverge from the reference value until, around p ¼ 400,
the algorithm for the computation of the differentiation matrices (see Appendix C in [63]) becomes unstable and breaks
down. In contrast, the eigenvalue computed using the fk½2�n g basis converges exponentially until close to machine precision,
and although a small systematic trend can be observed for p J 103, the calculation remains stable even at very large p.

5.2.2. Effects of the Hartmann profile
Problems with the Hartmann velocity and magnetic-field profiles (2.12) differ from their counterparts with quadratic (or,

more generally, polynomial) steady-state profiles in that the stiffness matrix K contains contributions of the formR 1
�1 dneHnnLmðnÞLnðnÞ, where Hn is a real parameter. These exponentially-weighted inner products are non-zero for all
ðm;nÞ, and, as a result, K is full. One immediate implication concerns memory and eigenvalue-computation costs, respec-
tively scaling as N2 and N3 for a problem of dimension N ¼ dimðV ½N�Þ. MHD problems are especially affected, since the spec-
tral decompositions now have to be performed for both of the velocity and magnetic-field eigenfunctions, leading to 4-fold
and 8-fold increases in size and complexity relative to inductionless or non-MHD problems. The non-sparsity of K also
necessitates a re-evaluation of whether or not our schemes are roundoff stable at large spectral orders. For, our argument
in Remark 15 that kKk1 is p-independent relied on the number of non-zero elements in each of its rows being fixed, which
no longer applies in problems with exponential profiles. Yet, as Fig. 12 illustrates, in practice kKk1 is to a very good approx-
imation p-independent irrespective of the value of the Hartmann number, suggesting that our schemes are well-conditioned
for the Hartmann family of steady-state profiles as well. Of course, kKk1 does experience a growth with Hz, but that growth
is due to physical parameters only.

In Section 4.2.2, we introduced two alternative ways of evaluating the U and B-dependent terms in the stiffness matrix,
one of which employs suitable quadrature rules [39] to compute the exponentially-weighted inner products exactly, while
the other is based on approximate LGL quadrature at the precision level specified in (4.44). The eigenvalue calculations in
Table B.3 have already hinted at a close agreement between the two methods in inductionless flow, which we now examine
in more detail, using film MHD flow with oblique magnetic field as a more challenging example. We consider a problem with
the same parameters as in Fig. 9, and track the dependence of the computed eigenvalue of Mode 1 and Mode 31 (as usual,
ordered in descending order of ReðcÞ) as p ¼ pu ¼ pb is varied from 30 to 1500. We calculate the eigenvalues using both exact
quadrature (Eqs. (4.40) and (4.41)), and approximate quadrature (Eqs. (4.46) and (4.47)) at the smallest precision level con-
sistent with (4.44). Fig. 13 demonstrates that the eigenvalues converge exponentially towards their reference values, com-
puted at p ¼ 2500 via the exact-quadrature method, in a nearly identical manner, until limited by finite arithmetic precision.
10
1

10
2

104

105

p

||K
|| ∞

H
z
 = 0.1

10

500

10
−1

10
0

10
1

10
2

10
3

H
z

∝ H
z

2/3

Fig. 12. Infinity norm of the stiffness matrix K of film MHD problems with the Hartmann velocity and magnetic-field profiles at Re ¼ 104, Pm ¼ 1:2,
Hx ¼ Hz= tanð1�Þ, Ga ¼ 8:3� 107, Ca ¼ 0:07, and a ¼ 1. In the left-hand panel, kKk1 is plotted as a function of p ¼ pu ¼ pb for Hz 2 f0:1;10;500g. The right-
hand panel shows kKk1 as a function of Hz at fixed pu ¼ pb ¼ 200. The power law kKk1 / H2=3

z is plotted for reference.



10
2

10
3

10
 -16

10
 -12

10
 -8

10
 -4

p

R
el

.d
if

fe
re

nc
e

Mode 1

Mode 31

Fig. 13. p-convergence in film MHD problems with Hartmann velocity and magnetic-field profiles and oblique steady-state magnetic field. The flow
parameters are as in Fig. 9 and Table B.7, and the eigenvalues shown are for Modes 1 and 31. The solid and dashed lines respectively represent eigenvalues
obtained via the exact and LGL quadrature schemes. Convergence is computed relative to a reference value at p ¼ pu ¼ pb ¼ 2500 obtained using the exact-
quadrature method.

D. Giannakis et al. / Journal of Computational Physics 228 (2009) 1188–1233 1215
Convergence for Mode 31 is about an order of magnitude less than Mode 1, but in both cases the computed eigenvalues re-
main stable at large p. It therefore appears that a version of Banerjee and Osborn’s theorem [42] that 2p� 1 quadrature pre-
cision is sufficient for convergence in elliptical eigenvalues problems also applies in OS-type problems. We remark that due
to the aforementioned issues regarding storage and computation cost, we were not able to extend the calculation to as high
values of p as we did in the non-MHD problem with the Poiseuille velocity profile (Fig. 11).

5.2.3. Non-normality issues
Despite yielding stiffness and mass matrices that are ‘optimally’ conditioned with p, our choice of bases does compara-

tively little in addressing the second major source of roundoff error in our stability problems, which is due to the non-nor-
mality of the OS and induction operators (2.1). As already discussed in Section 1.1, at large Reynolds numbers the OS
operator is highly non-normal, and, in consequence, its spectrum contains nearly linearly dependent eigenfunctions (with
respect to the L2 or energy inner products). According to Reddy et al. [38], expanding arbitrary functions of unit norm in
terms of the OS eigenfunctions would require coefficients scaling as expðcRe1=2Þ (for a ¼ 1). At around Re ¼ 4� 104, the coef-
ficients would be as large as 1016, indicating that in 64-bit arithmetic (15 significant digits) expansions of arbitrary functions
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would be severely affected by roundoff error. Similarly, one would expect the reverse operation of decomposing the OS
eigenfunctions in a basis of polynomials to be also characterized by a sharp rise in roundoff sensitivity with Re.

Consider, for example, the spectra in Fig. 14, which have been computed at Re ¼ 4� 104 and Re ¼ 105 with our Matlab
code, working in 64-bit arithmetic. Instead of a well-defined intersection point between the A, P, and S branches, the numer-
ically computed spectra exhibit a diamond-shaped structure of eigenvalues, whose area on the complex plane grows with Re.
This type of spectral instability, which is entirely caused by finite-precision arithmetic, has come to be the hallmark of
roundoff sensitivity due to non-normality of the OS operator [16,17,36,38]. As expected from the analysis in [38], the
sensitivity increases steeply with the Reynolds number: Comparing the spectrum at Re ¼ 4� 104 with the corresponding
one at Re ¼ 3� 104 (Fig. 4) reveals that it only takes a factor of 0.3 increase in Re for a noticeable diamond-shaped pattern
to form (though a small diamond is already present in Fig. 4).

In channel problems, the diamond-shaped pattern also emerges at around Re ¼ 4� 104, and at marginally smaller
Re ¼ 3� 104 if the calculation is performed in the Lagrange interpolant basis of Section 5.2. In the latter case, decreasing
Re to 2� 104 is sufficient for the diamond to become virtually unnoticeable by eye, despite the basis being ‘ill-conditioned’.
A similar Reynolds number for the onset of the spectral instability (Re ¼ 2:7� 104 in Fig. 2 of Ref. [17]) is reported by Don-
garra et al. for their Chebyshev tau scheme. Therefore, in these examples the accuracy of the computed eigenvalues and
eigenvectors appears to be limited by the physical parameters of the problem, in accordance with the estimates of Reddy
et al. [38], rather than the details of the numerical scheme. If that is the case, then, as noted by Dongarra et al. [17], the only
way of addressing the non-normality issue would be to increase numerical precision. Those authors have observed that
working in 128-bit arithmetic does indeed remove the diamond-shaped pattern from the numerical spectra. Unfortunately,
we have not been able to verify this for our Galerkin schemes, as our code was written in Matlab, which does not natively
support extended-precision floating-point numbers. However, there is no reason to believe that increasing the number of
significant digits would not alleviate the spectral instability in our schemes as well.

Turning now to MHD, at a given value of the Reynolds number the effects of non-normality may be more or less severe
compared to the hydrodynamic case, depending on the remaining parameters of the problem (Pm, Hx, Hz). The general rule of
thumb is, however, that whenever the spectrum contains branch-intersection points, the highly non-orthogonal modes close
to them will at some point experience the spectral instability if Re and/or Rm are increased. The examples in Fig. 15 illustrate
that in problems with zero background magnetic field the magnetic modes are the first to develop the diamond-shaped pat-
tern if Pm is greater than unity. Moreover, Fig. 16 shows that if Re is increased in the film MHD problem in Fig. 9 four branch
intersection points are formed, all of which are affected by roundoff errors at Re ¼ Oð105Þ. On the other hand, in the
Pm K 10�5 regime relevant to terrestrial fluids, the gradual disappearance of the three-branch structure with increasing
Hz (see Section 5.1.2) results to smaller regions on the complex plane being dominated by inaccurately computed
eigenvalues.

5.3. Consistency calculations

The energy-balance relation (2.17) forms the basis of the following consistency check for film MHD problems: First, solve
the matrix eigenproblem (4.3) to obtain c and the discrete representation v of ðu; b; aÞ. Using v , the corresponding definition
of the basis functions wm (Definition 6), and Eqs. (2.16), compute the quantity eC :¼ CR þ CM þ CJ þ Cm þ Cg þ CaU þ CaJ . Then,
according to (2.17), the relative difference between C ¼ ReðcÞ and eC, given by � :¼ jðeC � CÞ=Cj, should be small, ideally close
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Fig. 15. Eigenvalue spectra of film MHD flow with the Poiseuille velocity profile and zero steady-state magnetic field (Hx ¼ Hz ¼ 0) for magnetic Prandtl
numbers Pm ¼ 5 (a) and 10 (b). The remaining parameters are equal to those in Fig. 7. As Pm increases, the magnetic modes (marked with þ markers)
develop the diamond-shaped pattern characteristic to roundoff errors caused by non-normality of the stability operators. The hydrodynamic modes
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to machine precision. We note that the presence of the second derivatives of b in (2.16e) and (2.16g), which cannot be de-
fined weakly for b 2 H1ðXÞ, necessitates that for the purposes of this calculation ðu; b; aÞ is restricted to the strong solution
space DK. Of course, in our polynomial subspaces of H1 square integrability of second (and higher) derivatives is in principle
not an issue. However, as we discuss below, practical repercussions in evaluating expressions like (2.16e) and (2.16g) are
nonetheless present, since in the flng basis, which has been constructed so as to reflect H1 regularity, the matrix represen-
tations of sesquilinear forms involving second weak derivatives are not stable with p. Specifically, as can be checked either
numerically or from the properties of the Legendre polynomials, matrix coefficients of the form ðbD2ln;

bD2lmÞ0;bX grow like p2,
while boundary terms bD2lnð1Þ scale as p5=2.

Fig. 17 shows the details of such a calculation for film MHD problems at Pm ¼ 1:2, with external magnetic field oriented at
1� relative to the streamwise direction, and flow-normal Hartmann number Hz 2 ½0:1;100� (correspondingly, the streamwise
Hartmann number Hx ranges from approximately 5.73 to 5730). As Hz is varied, a single mode is continuously tracked, which
corresponds to Mode M2 at Hz ¼ 100 (see Table B.7 and Fig. 9). That mode is stable for sufficiently weak magnetic fields, but
as Hz increases it undergoes an instability in which the dominant energy input is Maxwell stress (cf. the instabilities in non-
MHD and low-Pm flows caused by positive Reynolds stress). At the same time, the energy E (2.15) changes from being pre-
dominantly magnetic to a nearly equal mix of magnetic and free-surface energies (at Hz � 10 the energy is also seen to have
a significant kinetic contribution). For all values of the Hartmann number considered, the error � remains small (�K 10�6),
but displays a trend with Hz that mirrors CaJ . We attribute this behavior to roundoff error in CaJ due to that term’s depen-
dence on D2bð0Þ. In fact, the reason that we chose to examine Mode M2, rather than, say, Mode M1, is that at sufficiently large
Hartmann numbers the magnetic and surface energies of that mode are both appreciable, making it particularly susceptible
to errors associated with CaJ . Indeed, as the dotted line in the lower-left panel in Fig. 17 shows, decreasing p from 200 to 100
results to a noticeable change in �, which diminishes roughly by an order of magnitude. On the other hand, modes with small
jCaJj, are comparatively unaffected by the choice of p (e.g. for Mode M1 � is of order 10�10 for both p ¼ 100 and p ¼ 200, and
for all Hz 6 100). It therefore appears that � is dominated by roundoff error in CaJ , rather than some inconsistency in our
numerical scheme and/or its implementation.

As a further consistency check we have compared growth rates for the two most unstable modes of the results of Table
B.2 at Re ¼ 3� 104 (see also Fig. 4(b)) with the results of free-surface flows computed using a fully nonlinear Navier–Stokes
solver. The Navier–Stokes code is based on the arbitrary Lagrangian–Eulerian (ALE) spectral element code developed by Ho
[20], Rønquist [64], and Fischer [65]. For a ¼ 1, the (nominal) computational domain was taken as X ¼ ½0;2p� � ½�1;0�,
which was tessellated with a 6� 10 array of spectral elements. A uniform element distribution was used in the streamwise
direction while a stretched distribution was used in the wall-normal direction. Near the wall, an element thickness of
Dz ¼ 0:005 was used to resolve the boundary layer of the unstable eigenmodes. The polynomial order within each element
was N ¼ 13 and third-order timestepping was used with Dt ¼ 0:00125. The initial conditions corresponded to the base flow
plus d :¼ 10�5 times the velocity eigenmode associated with Mode k, with k ¼ 1 or 2, i.e. the most and second-most unstable
eigenmode for these particular flow conditions. The domain was stretched in the z direction to accommodate the OðdÞ sur-
face displacement using transfinite interpolation [66]. The eigenmodes, which are defined only on z ¼ ½�1;0�, were mapped
onto the nominal domain then displaced along with the mesh. The base flow was defined as UðzÞ ¼ 1� z2 over the deformed
mesh. Mean growth rates were computed by monitoring the L2-norm of the wall-normal velocity uz and definingeCðtÞ :¼ lnðkuzðtÞk2=kuzð0Þk2Þ. The error is again defined as ðeCðtÞ � CÞ=C, where C is computed using the linearized code.
Aside from some initial transients, the error over t ¼ ½5;100� was less than 10�5 for Mode 1 (C ¼ 0:007596891433227)
and less than 5�3 for Mode 2 (C ¼ 0:000066091261962). These results provide independent confirmation of both the lin-
ear-stability and spectral-element based ALE codes.



Fig. 17. Energy balance for film MHD flow at Re ¼ 104, Pm ¼ 1:2, Ga ¼ 8:3� 107, Ca ¼ 0:07, a ¼ 1, and pu ¼ pb ¼ 200. The flow-normal Hartmann number
Hz ranges from 0.1 to 100, with the streamwise Hartmann number given by Hx ¼ Hz= tanð1�Þ. The curves track the behavior of a single mode as a function of
Hz , which at Hz ¼ 100 is Mode M2 (see Fig. 9 and Table B.7). The graphs in the right-hand panels show the energies (2.15), normalized so that E ¼ 1, and the
energy-transfer terms (2.16). The solid (dotted) portions of the curves in the logarithmic plots correspond to positive (negative) values. The left-hand panels
display the growth rate C and phase velocity C, as well as the error �. The latter has also been evaluated for pu ¼ pb ¼ 100, and plotted as a dotted line, in
order to illustrate the roundoff sensitivity in CaJ .
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5.4. Critical Reynolds number calculations

Our final set of calculations pertains to the critical parameters for the onset of instability in channel and film problems
with flow-normal background magnetic field and Hartmann steady-state profiles. In channel problems, we seek the mini-
mum (critical) Reynolds number Rec and the corresponding wavenumber ac for which the spectrum contains unstable
modes, keeping the Hartmann number Hz and, where applicable, the magnetic Prandtl number Pm fixed. In film problems,
we also constrain the capillary and Galilei numbers, setting Ga ¼ 8:3� 107 and Ca ¼ 0:07. As stated in Section 2.2, and dis-
cussed in more detail in Ref. [12], Ca, Ga, Hz, and Pm are invariant under the Squire transformation for free-surface MHD.
Therefore, our computed values for the critical Reynolds number are also valid for three-dimensional normal modes for
the same values of fCa;Ga;Hz; Pmg. Depending on the particular application other choices of parameter constraints may



Table 2
Hartmann-number dependence of the critical Reynolds number Rec , wavenumber ac , and phase velocity Cc for the even mode in channel problems, and the
hard and soft modes in film problems. The critical parameters have been computed in the inductionless limit and Pm ¼ 10�4, for Hx ¼ 0 and Hz 2 ½0;100�.
Nu ¼ Nb is the dimension of the velocity and magnetic-field solution spaces used in the calculations. The underlined digits in the results for the even channel
mode indicate discrepancy from the corresponding calculations in Tables 1 and 3 of Ref. [24]. The Hz > 10 inductionless results for the soft mode (indicated by a
slanted typeface) were evaluated by means of (5.1).

Hz Inductionless Pm ¼ 10�4 Nu/Nb

Rec ac Cc Rec ac Cc

Even channel mode
0 5.7722218E+03 1.020551E+00 2.640007E�01 5.7722218E+03 1.020539E+00 2.639993E�01 70
5 1.6408999E+05 1.134248E+00 1.564271E�01 1.6372742E+05 1.134200E+00 1.565433E�01 130
10 4.3981816E+05 1.739136E+00 1.547887E�01 4.3861946E+05 1.739025E+00 1.549340E�01 170
20 9.6176717E+05 3.237635E+00 1.550111E�01 9.5885971E+05 3.237379E+00 1.551713E�01 250
50 2.4155501E+06 8.076565E+00 1.550295E�01 2.4078809E+06 8.075917E+00 1.551967E�01 370
100 4.8311016E+06 1.615311E+01 1.550295E�01 4.8155338E+06 1.615195E+01 1.551990E�01 510

Hard mode
0 7.3610164E+03 2.814619E+00 1.842509E�01 7.3610164E+03 2.814619E+00 1.842509E�01 70
5 1.6378495E+05 1.136150E+00 1.564196E�01 1.6340601E+05 1.136107E+00 1.565386E�01 130
10 4.3979016E+05 1.739224E+00 1.547884E�01 4.3859195E+05 1.739113E+00 1.549337E�01 170
20 9.6176624E+05 3.237636E+00 1.550111E�01 9.5885884E+05 3.237379E+00 1.551713E�01 250
50 2.4155501E+06 8.076564E+00 1.550295E�01 2.4078809E+06 8.075929E+00 1.551967E�01 370
100 4.8311016E+06 1.615311E+01 1.550295E�01 4.8155338E+06 1.615189E+01 1.551990E�01 510

Soft mode
0 7.2024298E+03 6 10�5 2.0000E+00 70
5 2.97605E+05 9.0599E�04 1.0137E+00 6.73467E+04 1.4446E�03 1.052240E+00 130
10 3.17769E+07 2.2826E�05 1.0001E+00 1.00343E+05 3.5711E�03 1.015546E+00 170
20 5.00812E+11 0 1.000000E+00 1.53816E+05 8.9648E�03 1.006943E+00 250
50 3.35719E+24 0 1.000000E+00 2.79478E+05 3.0010E�02 1.002353E+00 370
100 1.22760E+46 0 1.000000E+00 4.41482E+05 7.3748E�02 1.000985E+00 510

Table 3
Critical Reynolds number Rec , wavenumber ac , and phase velocity Cc for channel and film MHD problems with ðHx ;HzÞ ¼ ð0; 10Þ and Pm 2 ½10�8 ;10�4�. All
calculations were performed using a Nu ¼ Nb ¼ 300 discretization. The underlined digits in the channel-problem calculations differ from the corresponding
ones in Table 3 of Ref. [24].

Pm Channel Film

Rec ac Cc Rec ac Cc

1.0E�08 4.3981789E+05 1.739135E+00 1.547887E�01 4.3978989E+05 1.7392302E+00 1.547885E�01
1.0E�07 4.3981547E+05 1.739135E+00 1.547889E�01 4.3978751E+05 1.7392222E+00 1.547887E�01
1.0E�06 4.3979162E+05 1.739128E+00 1.547912E�01 4.3976375E+05 1.7392162E+00 1.547909E�01
1.0E�05 4.3958738E+05 1.739141E+00 1.548125E�01 2.1891E+05 1.978E�03 1.004947E+00
1.0E�04 4.3861946E+05 1.739024E+00 1.549340E�01 1.0034E+05 3.571E�03 1.015546E+00
1.0E�03 4.2969213E+05 1.739870E+00 1.559585E�01 6.12269E+04 2.9025E�03 1.020892E+00
1.0E�02 4.8282141E+04 4.894029E�03 8.973103E�01 4.646059E+04 9.0953E�04 1.089590E+00
1.0E�01 6.8382770E+02 2.788195E�01 8.899146E�01 1.1205597E+03 1.8693E�01 8.803852E�01
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be appropriate, but unless fCa;Ga;Hz; Pmg are fixed, three-dimensional modes may be unstable at lower Reynolds numbers
than the two-dimensional ones. In all cases, however, Rec , ac , and the corresponding modal phase velocity Cc , can be obtained
by solving a minimization problem for Re, constrained by the eigenproblem (4.3) and the normalization kvk2 ¼ 1. The
numerical results presented in Tables 2 and 3 were obtained in that manner, using Matlab’s fmincon optimization solver
to carry out the computations.

We remark that due to the structure of the corresponding eigenvalue contours in the ðRe;aÞ plane, as well as the shallow
gradient of ReðcðRe;aÞÞ for Hz � 1, the calculations for the soft mode are significantly more poorly conditioned than the cor-
responding ones for the hard mode, particularly for small-Pm problems [12]. In particular, we have detected an Oð10�4Þ sys-
tematic drift in the Pm 6 10�3 results for ac with the number of iterations of the optimization run, indicating that with the
presently available computational resources those solutions have not fully converged. Any disagreement with future repe-
titions of the calculations should therefore be assessed with the latter caveat in mind.

We begin from channel and film problems in the inductionless limit, critical parameters of which are listed for Hz 2 ½0;100�
in the left-hand portion of Table 2. In the channel case, the critical mode is always of even symmetry and lies in the A branch of
the spectrum (Cc < hUiÞ. As indicated by the underlined digits in the computed values, our calculations are in excellent agree-
ment with those by Takashima [24]. Even though channel problems also exhibit an odd unstable mode, its critical Reynolds
number always exceeds that of the even one [60], and therefore we do not consider it here. On the other hand, in film prob-
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lems either the soft or the hard mode, respectively, characterized by C < hUi and C > 1 (see Section 5.1), can have the smallest
critical Reynolds number, depending on the Hartmann number and the free-surface parameters, Ca and Ga.

As is the case in non-MHD problems [58], the neutral-stability curve ImðcÞ ¼ 0 of the soft mode exhibits a bifurcation
point ðReb;0Þ in the ðRe;aÞ plane, where the curve splits into an upper and a lower branch. The location of the bifurcation
point on the a ¼ 0 axis, as well as the corresponding phase velocity Cb, can be determined in closed form using regular per-
turbation theory about a ¼ 0 [12]. The results,
Reb ¼
ð8GaÞ1=2 sinhðHz=2ÞðHa� tanhðHzÞÞ1=2

ðHz cothðHz=2Þsech3ðHzÞð2Hzð2þ coshð2HzÞÞ � 3 sinhð2HzÞÞÞ1=2 and Cb ¼ 1þ sechðHzÞ; ð5:1Þ
which reduce to Reb ¼ ð5Ga=8Þ1=2 and Cb ¼ 2 in the non-MHD limit Hz & 0, indicate that as Hz grows Reb increases exponen-
tially. Because Reb is always a lower bound for Rec , this in turn implies that for all but small Hartmann numbers the onset of
instability in inductionless film problems is governed by the hard mode. Direct numerical calculations of Rec for the soft
mode rapidly become intractable, but using ðReb;0;CbÞ as an estimate for ðRec;ac;CcÞ, as done in Table 2 for Hz > 10, produces
small error [12].

According to the inductionless results in Table 2, the critical parameters of the hard mode are very close to the corre-
sponding ones in channel problems, apart from small Hartmann numbers, where gravity and surface tension are more
important than the magnetic field. The agreement between the film and channel results suggests that for sufficiently strong
magnetic fields the free surface only plays a minor role in the hard instability. Moreover, the fact that the critical wavenum-
ber of the hard mode increases with Hz (i.e. shorter wavelengths become unstable first) is consistent with the decreasing
Hartmann-layer thickness being the principal contributing factor in the instability suppression [60].

As can be checked from Tables 2 and 3, the error in Rec incurred by making the inductionless approximation is less than
4� 10�3 for the even channel mode over all Hartmann numbers and magnetic Prandtl numbers probed. These calculations are
in very good agreement with the corresponding ones by Takashima, and are illustrative of the weak dependence of the onset
of instability on Pm� 1 in channel flow [24]. As Pm grows above Oð10�4Þ, the accuracy of the inductionless approximation
progressively deteriorates, until the critical mode undergoes a bifurcation to a magnetic mode (i.e. a singular mode in the limit
Pm& 0) of odd symmetry, manifested by the sharp decrease in the Pm ¼ 10�2 result for ac in the channel-flow part of Table 3.

Turning to film problems, Table 2 demonstrates that as with the even channel mode, for small Pm the inductionless
approximation yields accurate results in the case of the hard mode. On the other hand, the data clearly show that a small,
but non-zero, Pm affects significantly the critical parameters of the soft mode. In particular, the previously encountered
exponential growth of Rec with Hz becomes suppressed to the point that it now trails the hard mode’s critical Reynolds num-
ber by a wide margin. In the right-hand portion of Table 3 the hard mode (Cc < 1) is seen to govern the onset of instability for
Pm K 10�6, with the soft mode, characterized by Cc > 1, taking over at larger magnetic Prandtl numbers. Even though no fur-
ther bifurcations occur for Pm 2 ½10�6;10�2�, the soft mode in itself is sensitive to Pm. The observed sensitivity is due to the
neutral stability of Mode F in the strong-field limit of inductionless flows (see Section 5.1.3), which renders it particularly
susceptible to effects associated with a non-zero magnetic Prandtl number [12]. In total, over the interval
10�8

6 Pm 6 10�4, which roughly coincides with the Pm values of terrestrial incompressible fluids, the critical Reynolds
number of the examined film problems decreases by almost a factor of five.
6. Conclusions

In this paper we have presented a spectral Galerkin method for linear-stability problems in free-surface MHD. The meth-
od is essentially an extension of the scheme developed by Kirchner [8] and Melenk et al. [9] to solve the Orr–Sommerfeld
(OS) equation for plane Poiseuille flow, and employs the Legendre bases introduced by Shen [10,11]. Besides free-surface
MHD problems, which we refer to as film MHD problems (Definition 1), our scheme provides a unified framework to solve
MHD stability problems with fixed boundaries—the so-called channel MHD problems (Definition 2)—and their simplified ver-
sions at vanishing magnetic Prandtl number Pm, which we refer to as inductionless film and channel problems (Definitions 3
and 4). We studied problems with either the Poiseuille velocity profile, or the Hartmann velocity and magnetic-field profiles,
both of which are physically motivated. However, our schemes are applicable to arbitrary analytic steady-state profiles. In all
cases, the Galerkin discretization results to the matrix generalized eigenvalue problem Kv ¼ cMv , where K and M are,
respectively, the stiffness and mass matrices, c is the complex growth rate, and v is a column vector containing the problem’s
degrees of freedom. We detected no spurious eigenvalues, a fact which we attribute to the non-singularity of M in all bases.

We discretized the solution spaces for the velocity and magnetic-field eigenfunctions using Legendre internal shape func-
tions and nodal shape functions, chosen according to the Sobolev spaces of the continuous problems. Separating the basis
polynomials into internal and nodal ones facilitates the natural (weak) imposition of the boundary conditions for free-sur-
face MHD, namely the stress and kinematic conditions at the free surface, and the Robin-type insulating boundary conditions
for the magnetic field. The orthogonality properties of the bases guarantee that roundoff error is independent of the spectral
order p, allowing one to work at the large spectral orders (p > 500) required to resolve the small length scales present at high
Reynolds numbers Re. Moreover, in problems with polynomial velocity and magnetic-field profiles, K and M are sparse, and
iterative solvers can be used to compute c and v efficiently.
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The optimal conditioning of our schemes with respect to p alleviates only marginally their roundoff sensitivity due to
non-normality of the stability operators. At around Re ¼ 4� 104 we observed the formation of the characteristic diamond
shaped pattern on the complex eigenvalue plane caused by lack of sufficient precision in 64-bit arithmetic. An alternative
discretization, performed in terms of Lagrange interpolation polynomials, was found to give rise to the pattern at only
slightly smaller Reynolds numbers (Re ¼ 3� 104, which is close to the value reported in [17] for a Chebyshev tau scheme),
despite the ill conditioning of the Lagrange interpolant basis. Roundoff errors associated to non-normality therefore appear
to be governed by physical parameters, rather than the details of the discretization scheme. Working in extended-precision
(e.g. 128-bit) arithmetic is probably the only way to address this type of error, but, at the time of writing, that option could
not be implemented with our Matlab code.

We described two ways of addressing the presence of exponentially weighted sesquilinear forms in problems with Hart-
mann steady-state profiles. In the first approach, the forms are evaluated without incurring quadrature error by means of the
algorithm developed by Mach [39] to compute Gauss quadrature knots and weights for exponential weight functions on a
finite interval. The second approach involves replacing the forms by approximate ones derived from Legendre–Gauss–Lob-
atto (LGL) quadrature rules at the 2p� 1 precision level. The latter has been established by Banerjee and Osborn [42] as suf-
ficient to guarantee stability and convergence in elliptical eigenvalue problems, but, to our knowledge, no corresponding
bound exists for OS problems. We found that eigenvalues computed via the LGL method agree to within roundoff error with
the corresponding ones obtained using exact quadrature, indicating that a version of Banerjee and Osborn’s theorem should
also be applicable in eigenvalue problems of the OS type.

As an independent consistency check, we compared modal growth rates in non-MHD free-surface flow to energy growth
rates in fully nonlinear simulations. At Re ¼ 3� 104 and wavenumber a ¼ 1 we found that the error over 100 convective
times is less than 10�5 and 5�3, respectively, for the first and second least stable modes. We also compared modal growth
rates in problems with oblique external magnetic field to the corresponding ones derived from an energy conservation
law for free-surface MHD. Here the error was found to be less than 10�6, with its largest portion attributed to roundoff sen-
sitivity in the calculation of one of the energy terms, rather than inconsistencies in the numerical scheme. In channel prob-
lems, we found that our results for the critical Reynolds number, wavenumber, and phase velocity for Hartmann flow agree
very well with the corresponding ones by Takashima [24], obtained using a Chebyshev tau method.

In the magnetic Prandtl number regime of terrestrial fluids (Pm K 10�4) and for Hz P 5, the critical parameters of the hard
instability mode in film flow were found to be close to those of the even critical mode in channel flow. Increasing Pm from
10�8 to 10�4 at Hz ¼ 10 resulted to a mild, Oð10�3Þ, decrease of the critical Reynolds number Rec for the hard and channel
modes, but Rec dropped by more than a factor of four for the soft (surface) instability mode in film flow. A surface-wave
instability at small Pm, but absent in the inductionless limit, was also observed in the spectra of film MHD problems at
aRe ¼ 104, Hz ¼ 10 and Pm ¼ 10�4. These results are indicative of the important role played by the working fluid’s magnetic
Prandtl number in the stability of industrial and laboratory free-surface flows. In test problems at Pm ¼ 1:2 we observed that
increasing Hz from zero to 100 leads to the formation of multiple branches in the complex-eigenvalue plane. Unlike problems
at small magnetic Prandtl numbers, the spectra at Pm ¼ Oð1Þ contain unstable magnetic modes, two of which were recorded
in a film MHD problem with oblique external magnetic field.

Before closing, we note a number of directions for future work. On the analytical side, it would be highly desirable to ex-
tend the convergence analysis of Melenk et al. [9] to free-surface MHD. Even though the calculations presented in Section 5
provide strong numerical evidence that our schemes are stable and convergent, their well-posedness cannot be settled with-
out a rigorous analytical backing. Similarly, our proposed method in Section 4.2.2 of approximating weighted sesquilinear
forms using LGL quadrature requires an adaptation of Banerjee and Osborn’s [42] work to OS-type eigenvalue problems.
A further analytical objective would be to generalize the criterion of scale resolution [9], which provides an estimate of
the minimum spectral order required to achieve convergence at a given Re in non-MHD channel flow. Of course, any such
criterion would have to be numerically tested. On the physics side, our discussion in Sections 5.1 and 5.4, which is mostly
phenomenological, should be supplemented by a study of the operating physical mechanisms. In [12], we pursue such a
study in the low-Pm regime, but that should be extended to cover Pm ¼ Oð1Þ flows, which have been conjectured [7] to
be relevant in certain astrophysical accretion phenomena.
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Appendix A. Matrix representations of the schemes’ forms and maps

In this appendix we provide expressions for the matrix representations of the sesquilinear forms and maps used in the
main text. In Sections A.1, A.2, A.3 we consider the T matrices, defined in (4.22) and (4.31), whose elements can be stably



Table A.1
Properties of the matrices T ½kd1 d2 �

Hr
0

.

r ½kd1d2� Symmetry Bandwidth Non-zero diagonals

0 0 0 0 S 0 0
1 0 0 0 S 2 0, �2
1 1 0 0 S 3 �1, �3
1 2 0 0 S 4 0, �2, �4
2 0 0 0 S 4 0, �2, �4
2 0 1 0 A 3 �1, �3
2 1 0 0 S 5 �1, �3, �5
2 1 1 0 N/A 4 0, �2, �4
2 2 0 0 S 6 0, �2, �4, �6
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evaluated in closed form by means of the orthogonality properties of the Legendre polynomials (4.7). We then describe, in
Section A.4, how Mach’s quadrature scheme [39] can be used to evaluate the matrices S (4.39) and C.

A.1. The matrices T ½kd1d2 �
Hr

0

We evaluate the matrices T ½kd1d2 �
Hr

0
2 RN�N (4.22a) listed in Table A.1. In the rightmost column of that table 0 stands for the

main diagonal and m (�m) represents the mth upper (lower) diagonal. Also, in the third column from the left, S and A,
respectively, identify symmetric and antisymmetric matrices. For each k and r, one only needs to evaluate the cases
ðd1; d2Þ ¼ ð0;0Þ and ð1;0Þ, since the results for the remaining values of d1 and d2 6 r follow by making use of the hierarchical
relation (4.23) and the property T ½kd1d2 �

Hr
0
¼ ðT ½kd2d1 �

Hr
0
ÞT. Some of the results below can also be found in the paper by Kirchner [8].

However, since that reference contains a number of typographical errors, and for the sake of completeness, we have opted to
reproduce them here.

Working down the rows of Table A.1, our first result, which has already been stated in (4.11), is simply T ½000�
H0

0
¼ IN . Next,

we consider the non-zero elements in the main and upper diagonals of the matrices with r ¼ 1, all of which are symmetric.
These are
T ½000�
H1

0

� �
mn

¼
m ¼ n� 2 : �1

ð2n�3Þ1=2ð2n�1Þð2nþ1Þ1=2 ;

m ¼ n : 1
2nþ1

1
2n�1þ 1

2nþ3

� �
;

8<: ðA:1Þ

T ½100�
H1

0

� �
mn

¼
m ¼ n� 3 : �ðn�1Þ

ð2n�5Þ1=2ð2n�3Þð2n�1Þð2nþ1Þ1=2 ;

m ¼ n� 1 : 1
ðð2n�1Þð2nþ1ÞÞ1=2

n�1
ð2n�1Þð2n�3Þ � n

ð2n�1Þð2nþ1Þ þ nþ1
ð2nþ1Þð2nþ3Þ

� �
;

8<: ðA:2Þ
and
T ½200�
H1

0

� �
mn
¼

m ¼ n� 4 : �ðn�1Þðn�2Þ
ð2n�7Þ1=2ð2n�5Þð2n�3Þð2n�1Þð2nþ1Þ1=2 ;

m ¼ n� 2 : 1
ðð2n�3Þð2nþ1ÞÞ1=2

ðn�2Þðn�1Þ
ð2n�5Þð2n�3Þð2n�1Þ � 1

ð2n�1Þð2nþ1Þ
2ðn�1Þ2
ð2n�3Þ þ 1
� �

þ nðnþ1Þ
ð2n�1Þð2nþ1Þð2nþ3Þ

� �
;

m ¼ n : 1
ð2nþ1Þ

1
ð2n�1Þð2nþ1Þ

2ðn�1Þ2
ð2n�3Þ þ 1
� �

� 2nðnþ1Þ
ð2n�1Þð2nþ1Þð2nþ3Þ þ 1

ð2nþ3Þð2nþ5Þ
2ðnþ1Þ2

2nþ1 þ 1
� �� �

:

8>>>><>>>>: ðA:3Þ
Among the r ¼ 2 matrices, T ½000�
H2

0
, T ½100�

H2
0

and T ½200�
H2

0
are symmetric, T ½010�

H2
0

is antisymmetric, and T ½110�
H2

0
has no symmetry property.

In Ref. [8], the matrix corresponding to T ½200�
H2

0
is denoted by T	6. An expression for T	6 is provided in that paper’s Appendix B.6,

but contains typographical errors. In Eq. (A.7) ahead we indicate the erroneous terms, and also an error in the second upper
diagonal (which we have been unable to trace to individual terms), by underlines. The non-zero elements of the symmetric
and antisymmetric matrices, again in their and main and upper diagonals, are
T ½000�
H2

0

� �
mn

¼

m ¼ n� 4 : 1
ð2n�5Þ1=2ð2n�3Þð2n�1Þð2nþ1Þð2nþ3Þ1=2 ;

m ¼ n� 2 : �1
ð2n�1Þ1=2ð2nþ1Þð2nþ3Þ1=2

1
ð2n�3Þð2n�1Þ þ 1

ð2n�1Þð2nþ1Þ þ 1
ð2nþ1Þð2nþ3Þ þ 1

ð2nþ3Þð2nþ5Þ

� �
;

m ¼ n : 1
2nþ3

1
ð2n�1Þð2nþ1Þ2

þ 1
ð2nþ1Þ2ð2nþ3Þ

þ 2
ð2nþ1Þð2nþ3Þð2nþ5Þ þ 1

ð2nþ3Þð2nþ5Þ2
þ 1
ð2nþ5Þ2ð2nþ7Þ

� �
;

8>>>>><>>>>>:
ðA:4Þ

T ½010�
H2

0

� �
mn

¼
m ¼ n� 3 : 1

ð2n�3Þ1=2ð2n�1Þð2nþ1Þð2nþ3Þ1=2 ;

m ¼ n� 1 : �1
ðð2nþ1Þð2nþ3ÞÞ1=2

1
ð2n�1Þð2nþ1Þ þ 1

ð2nþ1Þð2nþ3Þ þ 1
ð2nþ3Þð2nþ5Þ

� �
;

8<: ðA:5Þ



Table A
Symme

T ½kd1 d2 �
H1

½kd1d2�

0 0 0
1 0 0
2 0 0
0 1 1
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T ½100�
H2

0

� �
mn
¼

m ¼ n� 5 : n�1
ð2n�7Þ1=2ð2n�5Þð2n�3Þð2n�1Þð2nþ1Þð2nþ3Þ1=2 ;

m ¼ n� 3 : �1
ð2n�3Þ1=2ð2n�1Þð2nþ1Þð2nþ3Þ1=2

n�1
ð2n�5Þð2n�3Þ þ n�1

ð2n�3Þð2n�1Þ � n
ð2n�1Þð2nþ1Þ þ nþ1

ð2nþ1Þð2nþ3Þ þ nþ1
ð2nþ3Þð2nþ5Þ

� �
;

m ¼ n� 1 : 1
ðð2nþ1Þð2nþ3ÞÞ1=2

n�1
ð2n�3Þð2n�1Þ2ð2nþ1Þ

� 2n
ð2n�1Þ2ð2nþ1Þð2nþ3Þ

þ 4ðnþ1Þ
ð2n�1Þð2nþ1Þð2nþ3Þð2nþ5Þ

�
� 2ðnþ2Þ
ð2nþ1Þð2nþ3Þð2nþ5Þ2

þ nþ3
ð2nþ3Þð2nþ5Þ2ð2nþ7Þ

�
;

8>>>>>>><>>>>>>>:
ðA:6Þ

T ½200�
H2

0

� �
mn
¼

m ¼ n� 6 : ðn�2Þðn�1Þ
ð2n�9Þ1=2ð2n�7Þð2n�5Þð2n�3Þð2n�1Þð2nþ1Þð2nþ3Þ1=2 ;

m ¼ n� 4 : 1
ð2n�5Þ1=2ð2n�3Þð2n�1Þð2nþ1Þð2nþ3Þ1=2 � ðn�2Þðn�1Þ

ð2n�7Þð2n�5Þ �
ðn�2Þðn�1Þ
ð2n�5Þð2n�3Þ þ

ðn�1Þ2
ð2n�3Þð2n�1Þ þ n2

ð2n�1Þð2nþ1Þ

�
� nðnþ1Þ
ð2nþ1Þð2nþ3Þ �

nðnþ1Þ
ð2nþ3Þð2nþ5Þ

�
;

m ¼ n� 2 : 1
ð2n�1Þ1=2ð2nþ1Þð2nþ3Þ1=2

ðn�1Þðn�2Þ
ð2n�5Þð2n�3Þ2ð2n�1Þ

� 2
ð2n�3Þð2nþ1Þ2

2ðn�1Þ2
2n�3 þ 1

� �
þ nðnþ1Þ
ð2n�1Þð2nþ3Þ

�
� 1

ð2nþ1Þð2nþ5Þ þ 1
ð2n�3Þð2nþ5Þ þ 2

ð2nþ1Þ2
þ 1
ð2nþ1Þð2n�3Þ

� �
� 2
ð2nþ1Þð2nþ5Þ2

2ðnþ1Þ2
2nþ1 þ 1

� �
þ ðnþ2Þðnþ3Þ
ð2nþ3Þð2nþ5Þ2ð2nþ7Þ

�
;

m ¼ n : 1
2nþ3

ðn�1Þ2

ð2n�3Þð2n�1Þ2ð2nþ1Þ2
þ n2

ð2n�1Þ2ð2nþ1Þ3

�
� 2nðnþ1Þ
ð2n�1Þð2nþ1Þ3ð2nþ3Þ

� 2nðnþ1Þ
ð2n�1Þð2nþ1Þ2ð2nþ3Þð2nþ5Þ

þ ðnþ1Þ2

ð2nþ1Þ3ð2nþ3Þ2
þ ðnþ2Þ2

ð2nþ1Þ2ð2nþ3Þ2ð2nþ5Þ
þ 2ðnþ1Þ2

ð2nþ1Þ2ð2nþ3Þ2ð2nþ5Þ
þ ðnþ1Þ2þ2ðnþ2Þ2

ð2nþ1Þð2nþ3Þ2ð2nþ5Þ2
� 2ðnþ3Þðnþ2Þ
ð2nþ1Þð2nþ3Þð2nþ5Þ2ð2nþ7Þ

� 2ðnþ3Þðnþ2Þ
ð2nþ3Þð2nþ5Þ3ð2nþ7Þ

þ ðnþ2Þ2

ð2nþ3Þ2ð2nþ5Þ3
þ ðnþ4Þ2

ð2nþ5Þ2ð2nþ7Þ2ð2nþ9Þ
þ ðnþ3Þ2

ð2nþ5Þ3ð2nþ7Þ2

�
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:7Þ
Moreover, the non-zero elements of T ½110�
H2

0
are given by
T ½110�
H2

0

� �
mn

¼

m ¼ n� 4 : n�1
ð2n�5Þ1=2ð2n�3Þð2n�1Þð2nþ1Þð2nþ3Þ1=2 ;

m ¼ n� 2 : 1
ðð2n�1Þð2nþ3ÞÞ1=2 � n�1

ð2n�3Þð2n�1Þð2nþ1Þ þ n
ð2n�1Þð2nþ1Þ2

�
� ðnþ1Þ
ð2nþ1Þ2ð2nþ3Þ

� ðnþ1Þ
ð2nþ1Þð2nþ3Þð2nþ5Þ

�
;

m ¼ n : 1
2nþ3 � n

ð2n�1Þð2nþ1Þ2
þ nþ1
ð2nþ1Þ2ð2nþ3Þ

�
� 1
ð2nþ1Þð2nþ3Þð2nþ5Þ � nþ2

ð2nþ3Þð2nþ5Þ2
þ nþ3
ð2nþ5Þ2ð2nþ7Þ

�
;

m ¼ nþ 2 : 1
ðð2nþ3Þð2nþ7ÞÞ1=2

nþ2
ð2nþ1Þð2nþ3Þð2nþ5Þ þ nþ2

ð2nþ3Þð2nþ5Þ2

�
� nþ3
ð2nþ5Þ2ð2nþ7Þ

þ nþ4
ð2nþ5Þð2nþ7Þð2nþ9Þ

�
;

m ¼ nþ 4 : �ðnþ4Þ
ð2nþ3Þ1=2ð2nþ5Þð2nþ7Þð2nþ9Þð2nþ11Þ1=2 :

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ðA:8Þ
A.2. The matrices T ½kd1d2 �
H1 and T ½kd1d2 �

H2
1

We now compute the matrices listed in Table A.2. In light of Remark 9, we consider explicitly only the elements in their
first two rows and columns with indices no greater than the spectral leakage l. The remaining elements can be deduced from
the results in Section A.1. All of the required T ½kd1d2 �

H1 matrices are symmetric. The non-zero elements in their first two rows are
given by
.2
try and spectral leakage l (4.26) of the matrices T ½kd1 d2 �

H1 and T ½kd1 d2 �
H2

1
.

T ½kd1 d2 �
H2

1

Symmetry l ½kd1d2� Symmetry l

S 4 0 0 0 S 4
S 5 0 1 0 N/A 3
S 6 0 1 1 S 2
S 2 0 2 2 S 0

1 0 0 S 5
1 1 0 N/A 4
1 1 1 S 3
2 0 0 S 6
2 1 1 S 4
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T ½000�
H1

h i
mn
¼

2
3

1
3

�1
61=2

1
3�101=2

1
3

2
3

�1
61=2

�1
3�101=2

0@ 1A; T ½100�
H1

h i
mn
¼

�1
3 0 1

5�61=2
�1

3�101=2
ð2=7Þ1=2

15

0 1
3

�1
5�61=2

�1
3�101=2

�ð2=7Þ1=2

15

0B@
1CA; ðA:9aÞ

T ½011�
H1

h i
mn
¼

1
2

�1
2

�1
2

1
2

 !
; T ½200�

H1

h i
mn
¼

4
15

1
15

�1
5�61=2

1
7�101=2

�ð2=7Þ1=2

15
21=2

105

1
15

4
15

�1
5�61=2

�1
7�101=2

�ð2=7Þ1=2

15
�21=2

105

0B@
1CA; ðA:9bÞ
where m 6 2 and, in each case, n 6 l. The only-non-symmetric T ½kd1d2 �
H2

1
matrices are T ½010�

H2
1

and T ½110�
H2

1
. The non-zero elements in

their first two rows are
T ½010�
H2

1

� �
mn

¼
1
2

�1
5

3
7�101=2 0 �1

105�21=2

1
5 0 �ð2=5Þ1=2

21
1

15�141=2
1

105�21=2

0@ 1A; ðA:10aÞ

T ½110�
H2

1

� �
mn

¼
9

70
�1
35 0 1

15�141=2 0 �1
105�221=2

5
21

�4
105

1
21�101=2 0 21=2

315
1

105�221=2

0@ 1A; ðA:10bÞ
where n 6 l. Moreover, for m 6 l and n 6 2 we have ½T ½010�
H2

1
�mn ¼ �½T

½010�
H2

1
�nm and
T ½110�
H2

1

� �
mn

¼
�1

3�101=2
�ð7=2Þ1=2

45 0 2�ð2=11Þ1=2

315

ð2=5Þ1=2

21
1

45�141=2
�1

105�21=2
�2�ð2=11Þ1=2

315

0B@
1CA

T

: ðA:11Þ
As for the symmetric matrices, their non-zero elements are
T ½000�
H2

1

� �
mn

¼
26
35

�22
105

1
3�101=2

2ð2=7Þ1=2

45 0 �1
315�221=2

�22
105

8
105

�1
7�101=2

�1
45�141=2

1
315�21=2

1
315�221=2

0@ 1A; ðA:12aÞ

T ½011�
H2

1

� �
mn

¼
3
5

�1
10 0 1

5�141=2

�1
10

4
15

�1
3�101=2

�1
5�141=2

 !
; T ½022�

H2
1

� �
mn

¼
3
2

�3
2

�3
2 2

 !
; ðA:12bÞ

T ½100�
H2

1

� �
mn

¼
2
5

�8
105

2ð2=5Þ1=2

63
1

15�141=2
3

385�21=2 0 �2ð2=13Þ1=2

3465

�8
105

2
105

�1
63�101=2

�1
45�141=2

�1
693�21=2

1
315�221=2

2ð2=3Þ1=2

3465

0@ 1A; ðA:12cÞ

T ½111�
H2

1

� �
mn

¼
0 1

10
�ð2=5Þ1=2

7 0 1
35�21=2

1
10

2
15

�1
21�101=2

�ð2=7Þ1=2

15
�1

35�21=2

0@ 1A; ðA:12dÞ

T ½200�
H2

1

� �
mn

¼
94

315
�16
315

1
21�101=2

141=2

495
21=2

315
29

4095�221=2 0 �2ð2=15Þ1=2

9009

�16
315

4
315

�1
63�101=2

�1
165�141=2

�1
693�21=2

�1
1365�221=2

2ð2=13Þ1=2

3465
2ð2=15Þ1=2

9009

0@ 1A; ðA:12eÞ

T ½211�
H2

1

� �
mn

¼
3

35
1

70 0 �1
15�141=2 0 2ð2=11Þ1=2

105

1
70

16
105

�1
7�101=2

�1
15�141=2

�21=2

105
�2ð2=11Þ1=2

105

0@ 1A; ðA:12fÞ
again for m 6 2 and, in each case, n 6 l.
A.3. The matrices T ½kd1d2 �
H1H2

0
and T ½kd1d2 �

H1H2
1

Regarding the matrices T ½kd1d2 �
H1H2

0
2 RNb�Nu (4.31), the relation lm ¼ bDk½2�m�3, which follows from (4.10c) and (4.12) for m P 4,

leads to ½T ½kd1d2 �
H1H2

0
�mn ¼ ½T

½kðd1þ1Þd2 �
H2

0
�m�3;n. Therefore, given the results in Section A.1, we only need to evaluate their elements in

rows 1–3. In the main text we make use of the matrices with ½kd1d2� ¼ ½000�, ½001�, ½011�, ½012�, ½100�, and ½111�. Among these

matrices, T ½012�
H1H2

0
has no non-zero elements in its first three rows, and the only corresponding non-zero element of T ½011�

H1H2
0

is

½T ½011�
H1H2

0
�13 ¼ �15�1=2. Moreover, we have



Table B
Comple
modes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
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T ½000�
H1H2

0

� �
mn
¼

1
3�101=2

�1
15�141=2 0

1
3�101=2

1
15�141=2 0

�ð3=5Þ1=2

7 0 1
105�31=2

0BBBB@
1CCCCA; T ½001�

H1H2
0

� �
mn
¼

1
3�101=2 0

�1
3�101=2 0

0 �1
5�211=2

0BBB@
1CCCA; ðA:13aÞ

T ½100�
H1H2

0

� �
mn

¼

�1
21�101=2

1
15�141=2

�21=2

315 0
1

21�101=2
1

15�141=2
21=2

315 0

0 �1
15�211=2 0 1

105�331=2

0BB@
1CCA; T ½111�

H1H2
0

� �
mn

¼

1
3�101=2 0
�1

3�101=2 0

0 �2
5�211=2

0BB@
1CCA: ðA:13bÞ
As for the T ½kd1d2 �
H1H2

1
matrices (4.31), one can deduce from (4.15) the relation ½T ½kd1d2 �

H1H2
1
�mn ¼ ½T

½kd1d2 �
H1H2

0
�m;n�2, where n P 3. Thus, it suf-

fices to write down the non-zero elements in their first two columns, namely
T ½000�
H1H2

1

� �
mn
¼

3
10

7
10

�1
61=2

�3
7�101=2 0 1

105�21=2

�2
15

�1
5

ð2=3Þ1=2

5
ð2=5Þ1=2

21
�1

15�141=2
�1

105�21=2

 !T

; ðA:14aÞ

T ½001�
H1H2

1

� �
mn
¼

1
2

1
2

�61=2

5 0 1
5�141=2

�1
6

1
6

1
5�61=2

�1
3�101=2

�1
5�141=2

 !T

; T ½011�
H1H2

1

� �
mn
¼

�1
2

1
2 0 �1

101=2

0 0 1
61=2

1
101=2

 !T

; ðA:14bÞ

T ½100�
H1H2

1

� �
mn

¼
1

30
11
30

�3ð3=2Þ1=2

35
�1

3�101=2
�ð7=2Þ1=2

45 0 2ð2=11Þ1=2

315

0 �1
15

ð2=3Þ1=2

35
ð2=5Þ1=2

21
1

45�141=2
�1

105�21=2
�2ð2=11Þ1=2

315

0@ 1AT

; ðA:14cÞ

T ½111�
H1H2

1

� �
mn
¼

0 0 ð3=2Þ1=2

5 0 �3
5�141=2

�1
6

1
6

ð2=3Þ1=2

5
ð2=5Þ1=2

3
3

5�141=2

0@ 1AT

; T ½012�
H1H2

1

� �
mn
¼

0 0 �31=2

21=2

�1
2

1
2

31=2

21=2

0@ 1AT

: ðA:14dÞ
.1
x phase velocity of the 33 least stable modes of non-MHD channel flow for Re ¼ 104, a ¼ 1, and pu ¼ 500. E and O respectively denote even and odd
The underlined digits differ from Table VII in Kirchner [8].

Symmetry c

A1 E 2.375264888204708E�01 + 3.739670622977800E�03i
P1 O 9.646309154505980E�01 � 3.516727763102788E�02i
P2 E 9.646425100392813E�01 � 3.518658379244306E�02i
A2 O 2.772043438088044E�01 � 5.089872725696847E�02i
P3 O 9.363165358813226E�01 � 6.320149583992000E�02i
P4 E 9.363517811647262E�01 � 6.325156907426749E�02i
P5 O 9.079830546294242E�01 � 9.122273543365197E�02i
P6 E 9.080563344920716E�01 � 9.131286177904398E�02i
P7 O 8.796272922073755E�01 � 1.192328526197428E�01i
P8 E 8.797556958146369E�01 � 1.193707310085290E�01i
A3 E 3.491068201236165E�01 � 1.245019775533875E�01i
A4 O 4.163510155757348E�01 � 1.382265253008630E�01i
P9 O 8.512458401242534E�01 � 1.472339290757578E�01i
P10 E 8.514493818793474E�01 � 1.474256007531364E�01i
P11 O 8.228350406948775E�01 � 1.752286786602681E�01i
P12 E 8.231369612662293E�01 � 1.754780735526174E�01i
A5 E 1.900592493682310E�01 � 1.828219254122344E�01i
A6 O 2.127257823532073E�01 � 1.993606947537197E�01i
P13 O 7.943883849443799E�01 � 2.032206650247992E�01i
P14 E 7.948183878257583E�01 � 2.035291440392746E�01i
A7 O 5.320452087682050E�01 � 2.064652191000982E�01i
A8 E 4.749011869521779E�01 � 2.087312200487454E�01i
P15 O 7.658768104770047E�01 � 2.311859867813260E�01i
P16 E 7.664940762955391E�01 � 2.315850738470669E�01i
A9 E 3.684984783493122E�01 � 2.388248317187859E�01i
P17 O 7.374157634158677E�01 � 2.587170762850995E�01i
P18 E 7.381150135550412E�01 � 2.596918833894374E�01i
A10 O 6.367193719487207E�01 � 2.598857151068238E�01i
A11 O 3.839876109047478E�01 � 2.651064996075768E�01i
A12 E 5.872129329806185E�01� 2.671617095882041E�01i
P19 O 7.123158603613657E�01 � 2.855147362764390E�01i
A13 E 5.129162044858087E�01 � 2.866250415809010E�01i
P20 E 7.088746527386480E�01 � 2.876553928005440E�01i
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A.4. The S and C matrices

Consider first the N � N real matrices Ŝ½dd1d2 �
Hr

0
and Ĉ ½dd1d2 �

Hr
0

, where
Table B
Comple

Re ¼ 10
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Re ¼ 3
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Ŝ½dd1d2 �
Hr

0

h i
mn
¼ ððbDdsHn

ÞbDd2 k½r�n ;
bDd1 k½r�m Þ0;bX ; Ĉ ½dd1d2 �

Hr
0

h i
mn
¼ ððbDdcHn

ÞbDd2 k½r�n ;
bDd1 k½r�m Þ0;bX : ðA:15Þ
Since, as can be checked from (4.10), the polynomial degree of k½r�N is p ¼ N þ 2r � 1 and (4.38) holds for polynomial inte-
grands of degree 2G� 1, it follows that
G P dð2pþ 1� d1 � d2Þ=2e ðA:16Þ
.2
x phase velocity and free-surface energy of the 25 least stable modes of non-MHD film problems for Re 2 f104 ;3� 104g, a ¼ 1, and pu ¼ 500.

c Ea=E

4

F 1.636790220183685E+00� 4.851788902889523E�04i 5.95029604E�01
U=A1 �1.258744419011071E�01� 1.267734744283048E�02i 3.12012285E�01
P1 9.645664964129769E�01� 3.498151105375294E�02i 8.59928147E�03
P2 9.361322278227999E�01� 6.272483617532590E�02i 8.24843986E�03
A2 2.737084272280358E�01� 6.855634840242179E�02i 1.98839334E�01
P3 9.077445447410823E�01� 9.042484684571116E�02i 4.68208671E�03
P4 8.791811637855212E�01� 1.179833312221292E�01i 1.92844526E�03
P5 8.508458277980712E�01� 1.456077205827657E�01i 6.29415846E�04
A3 4.233297248514352E�01� 1.527947883204778E�01i 4.90632138E�02
P6 8.221206497578007E�01� 1.729789468581871E�01i 1.84000369E�04
A4 2.235105758878935E�01� 1.909395457916256E�01i 2.30094877E�02
P7 7.938962004566481E�01� 2.005789501706050E�01i 4.74617209E�05
A5 5.432902724518236E�01� 2.128518545062346E�01i 1.39974917E�03
P8 7.649546650736264E�01� 2.276835520413650E�01i 1.21522357E�05
P9 7.371705501417370E�01� 2.548822045132372E�01i 2.85542761E�06
A6 3.915692416965370E�01� 2.590549069502794E�01i 3.88833494E�04
A7 6.467799165844248E�01� 2.592899774173674E�01i 1.47645831E�05
P10 7.119812904870686E�01� 2.820676589398622E�01i 6.06543374E�07
A8 5.273714914305525E�01� 3.092797918422443E�01i 3.04277981E�06
P11 6.931262998868540E�01� 3.180225151502317E�01i 5.14170230E�08
A9 6.457124994916073E�01� 3.477909338365971E�01i 1.47102882E�08
S1 6.771389216754621E�01� 3.644088407168712E�01i 1.54160824E�09
S2 6.739616432612101E�01� 4.124940177342512E�01i 2.46226277E�11
S3 6.727983669454568E�01� 4.593441332052542E�01i 3.35745219E�12
S4 6.719873216403318E�01� 5.076446444389148E�01i 5.99501002E�12

� 104

A1 1.777109467826313E�01+7.596891433226524E�03i 6.73196567E�02
F 1.165867404154607E+00+6.609126196220550E�05i 6.59668799E�01
P1 9.794340917915809E�01� 1.992447407811861E�02i 3.23559819E�02
P2 9.628544979448195E�01� 3.551174354146113E�02i 2.94308058E�02
P3 9.463560802377534E�01� 5.097331973604750E�02i 1.62255001E�02
P4 9.297026973082226E�01� 6.614300020956951E�02i 6.70762598E�03
P5 9.134728008203670E�01� 8.133958724198186E�02i 2.19144674E�03
A2 2.456896022473044E�01� 8.214801906333821E�02i 6.68402758E�02
P6 8.970623321017128E�01� 9.603430886296567E�02i 6.73525920E�04
P7 8.815739436530429E�01� 1.112960521979711E�01i 1.69360053E�04
P8 8.658432313002397E�01� 1.260327092364302E�01i 4.36056661E�05
A3 1.320303473330233E�01� 1.335807086232035E�01i 1.44718878E�02
P9 8.508112670769360E�01� 1.422144311252890E�01i 8.55100790E�06
A4 3.337201433496642E�01� 1.467551250908992E�01i 7.00626417E�03
P10 8.351742918640654E�01� 1.575111597024962E�01i 1.88518217E�06
P11 8.197962152286847E�01� 1.743703360427652E�01i 3.20927089E�07
A5 2.562045122606396E�01� 1.765448925470348E�01i 1.09806298E�03
P12 8.039053069616716E�01� 1.898641223374687E�01i 6.65466643E�08
A6 4.136265892643061E�01� 1.922295625842639E�01i 1.04719050E�04
P13 7.881907093648632E�01� 2.069381633959837E�01i 1.07268031E�08
A7 3.592250987817968E�01� 2.159060871520631E�01i 1.87478887E�05
P14 7.721219879499069E�01� 2.224301158545610E�01i 2.18026574E�09
A8 4.869460060412725E�01� 2.280874063638472E�01i 1.21869614E�06
P15 7.562001844560320E�01� 2.395797107104166E�01i 3.42065182E�10
A9 4.475669655065937E�01� 2.513455617569191E�01i 1.73101796E�07
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is sufficient to evaluate (A.15) exactly using Mach’s quadrature scheme (4.38) (see Remark 16 below). Specifically, introduc-
ing the differentiation matrices D½d� 2 RG�N , where ½D½d��kn ¼ bDdk½r�n ðn

½Hn �
G;k Þ, the diagonal weight matrix q̂ 2 RG�G with ½q̂�kk ¼ q̂½Hn �

G;k ,
and making use of the symmetry property k½r�m ð�nÞ ¼ ð�1Þmþ1k½r�m ðnÞ, leads to the expressions
Table B
Comple
basic ve

Hz ¼ 14
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Hz ¼ 10
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Ŝ½dd1d2 �
Hr

0

h i
mn
¼ 1� ð�1Þmþnþdþd1þd2

2
Hd

n D½d1 �
� �T

q̂D½d2 �
� �

mn

; Ĉ ½dd1d2 �
Hr

0

h i
mn
¼ 1þ ð�1Þmþnþdþd1þd2

2
Hd

n D½d1 �
� �T

q̂D½d2 �
� �

mn

:

ðA:17Þ
In order to evaluate the corresponding matrices for the H1ðbXÞ and H2
1ðbXÞ bases, we require, in addition to D½d� (in these cases

defined in terms of the lm and mn polynomials), the differentiation matrices ~D½d� 2 RG�N , given by
.3
x phase velocity of the 25 least stable modes of inductionless film problems for Re ¼ 3� 104, Hx ¼ 0, Hz 2 f14; 100g, a ¼ 1, and pu ¼ 500. The mean
locities (2.13) are hUi ¼ 0:92857 (Hz ¼ 14) and hUi ¼ 0:99000 (Hz ¼ 100).

c (exact) c (LGL)

F 1.250803320347780E+00� 2.710204569230917E�03i 1.250803320347785E+00� 2.710204569226326E�03i
P1 9.992558907968134E�01� 8.278623640630804E�03i 9.992558907968128E�01� 8.278623640632005E�03i
P2 9.983412274830362E�01� 1.153955777255885E�02i 9.983412274830334E�01� 1.153955777255501E�02i
P3 9.971871458061463E�01� 1.574122732685773E�02i 9.971871458061575E�01� 1.574122732685592E�02i
P4 9.958456733018820E�01� 2.082249893694447E�02i 9.958456733018941E�01� 2.082249893695383E�02i
A1 7.443403271513857E�01� 2.508630717839219E�02i 7.443403271514143E�01� 2.508630717838123E�02i
P5 9.943363317562995E�01� 2.672308538130646E�02i 9.943363317563000E�01� 2.672308538132008E�02i
P6 9.926686314074992E�01� 3.340200430852515E�02i 9.926686314075024E�01� 3.340200430855212E�02i
P7 9.908531269497747E�01� 4.082399991429871E�02i 9.908531269497418E�01� 4.082399991433201E�02i
P8 9.888926211468846E�01� 4.896745609487985E�02i 9.888926211468121E�01� 4.896745609488326E�02i
P9 9.867976372338676E�01� 5.780524551187560E�02i 9.867976372338272E�01� 5.780524551182478E�02i
P10 9.845655969364526E�01� 6.732761142131866E�02i 9.845655969364309E�01� 6.732761142116751E�02i
P11 9.822099908252879E�01� 7.750801897761816E�02i 9.822099908255588E�01� 7.750801897756798E�02i
P12 9.797220310376669E�01� 8.834750885737935E�02i 9.797220310377019E�01� 8.834750885770212E�02i
P13 9.771204512115413E�01� 9.981517267350792E�02i 9.771204512112240E�01� 9.981517267371046E�02i
A2 2.368356879643879E�01� 1.108928197764467E�01i 2.368356879643317E�01� 1.108928197764847E�01i
P14 9.743888984586451E�01� 1.119241248206234E�01i 9.743888984580990E�01� 1.119241248203608E�01i
P15 9.715529112637307E�01� 1.246347549303681E�01i 9.715529112632674E�01� 1.246347549293950E�01i
P16 9.685870142601962E�01� 1.379744678421002E�01i 9.685870142619369E�01� 1.379744678393579E�01i
P17 9.655237254880603E�01� 1.518907903583993E�01i 9.655237254945611E�01� 1.518907903606942E�01i
P18 9.623262080540158E�01� 1.664276167267078E�01i 9.623262080543736E�01� 1.664276167379970E�01i
P19 9.590305390384499E�01� 1.815151173941122E�01i 9.590305390221069E�01� 1.815151174037637E�01i
P20 9.555798476765293E�01� 1.972133973359055E�01i 9.555798476507427E�01� 1.972133973187993E�01i
P21 9.519909611712014E�01� 2.134202081540803E�01i 9.519909611744862E�01� 2.134202081078569E�01i
P22 9.481286807770287E�01� 2.301612018372402E�01i 9.481286808410694E�01� 2.301612018049951E�01i

0
F 1.228230320258259E+00� 1.274271411580269E�01i 1.228230320258261E+00� 1.274271411580508E�01i
A1 7.692528600903568E�01� 1.307579991780328E�01i 7.692528600903095E�01� 1.307579991780439E�01i
P1 9.992447360686594E�01� 3.104767136419010E�01i 9.992447360686832E�01� 3.104767136418933E�01i
P2 9.997121801728518E�01� 3.285242201184236E�01i 9.997121801728359E�01� 3.285242201184322E�01i
P3 9.997650052849759E�01� 3.342105171071617E�01i 9.997650052849608E�01� 3.342105171071501E�01i
P4 9.997174628844969E�01� 3.383295108740806E�01i 9.997174628845051E�01� 3.383295108740813E�01i
P5 9.996252559034351E�01� 3.424692553710839E�01i 9.996252559034374E�01� 3.424692553710882E�01i
P6 9.995023840023450E�01� 3.470297722038359E�01i 9.995023840023414E�01� 3.470297722038339E�01i
P7 9.993543779765491E�01� 3.521442787896791E�01i 9.993543779765489E�01� 3.521442787896813E�01i
P8 9.991827518518631E�01� 3.578764462600266E�01i 9.991827518518618E�01� 3.578764462600279E�01i
P9 9.989895506894819E�01� 3.642452461737458E�01i 9.989895506894788E�01� 3.642452461737469E�01i
P10 9.987747549940401E�01� 3.712744134314357E�01i 9.987747549940411E�01� 3.712744134314374E�01i
P11 9.985398377877914E�01� 3.789594139405163E�01i 9.985398377877902E�01� 3.789594139405166E�01i
P12 9.982845514991748E�01� 3.873170457908430E�01i 9.982845514991682E�01� 3.873170457908428E�01i
P13 9.980101121198811E�01� 3.963349146000884E�01i 9.980101121198807E�01� 3.963349146000889E�01i
P14 9.977163918439078E�01� 4.060291818567486E�01i 9.977163918439028E�01� 4.060291818567457E�01i
P15 9.974043469357776E�01� 4.163840862111700E�01i 9.974043469357741E�01� 4.163840862111693E�01i
P16 9.970741443085384E�01� 4.274166394391457E�01i 9.970741443085359E�01� 4.274166394391432E�01i
P17 9.967264073123024E�01� 4.391095288544287E�01i 9.967264073123018E�01� 4.391095288544292E�01i
P18 9.963617532397172E�01� 4.514809609456263E�01i 9.963617532397127E�01� 4.514809609456244E�01i
P19 9.959803771135028E�01� 4.645130313296775E�01i 9.959803771135038E�01� 4.645130313296766E�01i
P20 9.955835482148004E�01� 4.782251746069515E�01i 9.955835482147962E�01� 4.782251746069481E�01i
P21 9.951709523496204E�01� 4.925995260054937E�01i 9.951709523496221E�01� 4.925995260054883E�01i
P22 9.947448213734599E�01� 5.076566790081540E�01i 9.947448213734600E�01� 5.076566790081500E�01i
P23 9.943043251491813E�01� 5.233792815887196E�01i 9.943043251491827E�01� 5.233792815887189E�01i



Table B
Comple
pu ¼ 50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
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22
23
24
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Table B
Comple
a ¼ 1, a
identica

2
4
6
7

10
12
13
15
18
19
21
22
26
27
29
30
34
35
37
38
40
41
44
46
48
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~D½d�

 �

kn ¼
bDdlnð�n½Hn �

G;k Þ; H1ðbXÞ basis;bDdmnð�n½Hn �
G;k Þ; H2

1ðbXÞ basis;

8<: ðA:18Þ
as the nodal shape functions do not have definite symmetry about n ¼ 0. Note that the degree of lN and mN is now p ¼ N � 1
and p ¼ N þ 1, respectively (see Propositions 2 and 3), and the quadrature order G (A.16) must be modified accordingly.
Introducing Ŝ½dd1d2 �

H1 and Ĉ ½dd1d2 �
H1 , where
.4
x phase velocity c of the 25 least stable modes of the inductionless channel problem with Re ¼ 104, Hz ¼ 14, Hx ¼ Hz= tanð1�Þ ¼ 802:06, a ¼ 1, and
0.

P1 9.993700195546175E�01� 9.721004530793138E�02i
P2 9.976612096433158E�01� 1.030917967244671E�01i
P3 9.951774765278338E�01� 1.123185821184923E�01i
P4 9.921089021026304E�01� 1.244427518042686E�01i
P5 9.885576846065738E�01� 1.391394166517699E�01i
P6 9.845858924007105E�01� 1.561699942143518E�01i
P7 9.802375881163239E�01� 1.753455921597468E�01i
P8 9.755530144308208E�01� 1.965030475951849E�01i
P9 9.705872940874839E�01� 2.194897048867427E�01i
P10 9.654406146046013E�01� 2.441635533378584E�01i
P11 9.994941998893740E�01� 2.565041224611593E�01i
P12 9.981140152080975E�01� 2.611657657075488E�01i
A1 6.455703277951147E�01� 2.663992874104253E�01i
P13 9.960868515182631E�01� 2.685202959225929E�01i
P14 9.602887830494103E�01� 2.704320708227363E�01i
P15 9.935265121923997E�01� 2.782735041820532E�01i
P16 9.905224108407159E�01� 2.902400425540363E�01i
P17 9.553532017423860E�01� 2.983346408422508E�01i
P18 9.870642174734445E�01� 3.042371579569956E�01i
P19 9.831554449489976E�01� 3.203013628990474E�01i
P20 9.507606261162745E�01� 3.280616396399530E�01i
P21 9.789956131371971E�01� 3.382151445827348E�01i
P22 9.742217743785576E�01� 3.577645640279395E�01i
P23 9.464376866330062E�01� 3.598000886532416E�01i
P24 9.689648687655241E�01� 3.794158635141329E�01i

.5
x phase velocity c of the 25 least stable magnetic modes of film MHD flow with zero background magnetic field (Hx ¼ Hz ¼ 0) for Re ¼ 104, Pm ¼ 1:2,
nd pu ¼ pb ¼ 500. The numbering in the left-hand column takes into account the hydrodynamic part of the spectrum, where the eigenvalues are
l to those listed in the Re ¼ 104 portion of Table B.2.

Pm1 9.931687361486334E�01� 7.411597582310019E�03i
Pm2 9.675367306486845E�01� 3.281002191260387E�02i
Am1 6.190480900456202E�02� 3.658789628263018E�02i
Pm3 9.417639706299372E�01� 5.851812430456833E�02i
Pm4 9.159676389192429E�01� 8.428165278355801E�02i
Am2 1.920049933116885E�01� 1.071612998031651E�01i
Pm5 8.901624704645013E�01� 1.100662088133551E�01i
Pm6 8.643528846481575E�01� 1.358613270394366E�01i
Am3 2.822530721072338E�01� 1.539360769033924E�01i
Pm7 8.385407224351258E�01� 1.616626213801015E�01i
Pm8 8.127269041407206E�01� 1.874678918924152E�01i
Am4 3.582077439231074E�01� 1.914285425627469E�01i
Pm9 7.869119473724944E�01� 2.132758984008717E�01i
Am5 4.256621499174164E�01� 2.230812126023304E�01i
Pm10 7.610961720585323E�01� 2.390858851311303E�01i
Am6 4.872210575835025E�01� 2.504579512041899E�01i
Pm11 7.352795492030260E�01� 2.648976198162467E�01i
Am7 5.443545800924333E�01� 2.744428964444233E�01i
Pm12 7.094483941647738E�01� 2.906859475830586E�01i
Am8 5.980039857056551E�01� 2.956003782976867E�01i
Am9 6.487390470896522E�01� 3.143557525264363E�01i
Pm13 6.851542434422162E�01� 3.161972818896561E�01i
Sm1 6.755955550215104E�01� 3.498770945867220E�01i
Sm2 6.744450022418006E�01� 3.900146284542740E�01i
Sm3 6.735137033545566E�01� 4.317737846977683E�01i
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Comple
Hz 2 f1

Hz ¼ 14
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Hz ¼ 10
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

D. Giannakis et al. / Journal of Computational Physics 228 (2009) 1188–1233 1229
Ŝ½dd1d2 �
H1

h i
mn
¼ ððbDdsHnÞbDd2ln;

bDd1lmÞ0;bX ; Ĉ ½dd1d2 �
H1

h i
mn
¼ ððbDdcHn ÞbDd2ln;

cDd1lmÞ0;bX ; ðA:19Þ
we obtain
Ŝ½dd1d2 �
H1 ¼ D½d1 �

� �T
qD½d2 � � ð�1Þdð~D½d1 �ÞTq~D½d2 �

� �
Hd

n=2; Ĉ ½dd1d2 �
H1 ¼ D½d1 �

� �T
qD½d2 � þ ð�1Þdð~D½d1 �ÞTq~D½d2 �

� �
Hd

n=2; ðA:20Þ
and analogous expressions for Ŝ½dd1d2 �
H2

1
and Ĉ ½dd1d2 �

H2
1

. We remark that relations similar to (4.24) also apply for the matrices in
(A.19), and can be used to economize on computational and coding effort. Taking into account (4.37), the matrices defined
in (4.39a) and (4.39b) follow from
.6
x phase velocity, free-surface energy and magnetic energy of the 25 least stable modes of film MHD problems for Re ¼ 104, Pm ¼ 1:2, Hx ¼ 0,
4;100g, a ¼ 1, and pu ¼ pb ¼ 500.

c Ea=E Eb=E

M1 2.270380672036139E�01+8.532604869900075E�02i 4.15866473E�02 4.97237361E�01
H1 1.919384905524941E+00� 1.172949885267797E�03i 3.15968015E�01 2.09879138E�01
M2 9.995840793641011E�01� 1.417526263789955E�03i 3.04333673E�01 6.41985937E�01
H2 -2.847216287312572E�02� 2.920489226833525E�02i 1.85103969E�01 3.08198426E�01
M3 1.682053603787788E+00� 4.662631113231238E�02i 1.28937382E�02 5.01537037E�01
M4 1.722751057514910E+00� 6.642148122438368E�02i 2.86820424E�03 5.01575407E�01
H3 8.814544722063286E�01� 7.705104315801427E�02i 4.88247091E�03 4.95838888E�01
M5 1.117649709474267E+00� 7.759014062122191E�02i 5.06714818E�03 4.91315317E�01
M6 1.574039072026148E�01� 9.363563046196770E�02i 6.77707415E�04 4.99685670E�01
M7 1.601466320264484E+00� 1.031275896765751E�01i 1.27650342E�03 5.00134991E�01
H4 8.172010198377916E�01� 1.131499316508656E�01i 5.95688418E�04 4.99708495E�01
M8 1.181640992076675E+00� 1.140119549834002E�01i 6.34987441E�04 4.99722050E�01
M9 1.656465275522214E+00� 1.323321995691261E�01i 9.92266529E�05 5.00369470E�01
H5 1.129326632878734E�01� 1.367535435721363E�01i 3.71835444E�03 5.00362703E�01
H6 7.611265053458105E�01� 1.439649989928883E�01i 7.11134368E�05 4.99961583E�01
M10 1.237550473392090E+00� 1.451025699884955E�01i 7.70799341E�05 4.99950947E�01
M11 1.526706282973983E+00� 1.537039908864869E�01i 4.20676979E�05 5.00064973E�01
H7 2.584958721785690E�01� 1.620000555598827E�01i 6.33489652E�06 5.00177885E�01
H8 7.103613357324571E�01� 1.716271044656941E�01i 8.59866230E�06 4.99997487E�01
M12 1.288246219805564E+00� 1.729959810276331E�01i 9.25804102E�06 4.99995429E�01
M13 1.590694085347552E+00� 1.889907605099330E�01i 1.79856321E�06 5.00109391E�01
H9 6.635651365085398E�01� 1.976348823168625E�01i 1.00211596E�06 5.00002518E�01
H10 1.335087582839600E+00� 1.991679576186086E�01i 1.12268416E�06 5.00006915E�01
M14 1.456211175350480E+00� 1.995780068488713E�01i 1.06677867E�06 5.00022669E�01
M15 2.179463129395062E�01� 2.031784037936585E�01i 4.53702323E�05 5.00678615E�01

0
M1 6.694536326393656E�01+2.118543148419851E�01i 4.94160348E�03 6.13642800E�01
M2 9.999601132761320E�01� 1.481066607045534E�03i 3.95658795E�01 6.02428183E�01
H1 2.018047351200520E+00� 3.802502402615522E�02i 6.77348201E�02 4.32418865E�01
H2 -1.492056137205857E�02� 4.468191325913003E�02i 1.89311063E�01 3.11236013E�01
M3 1.746281138935093E+00� 6.786656716731583E�02i 9.81692935E�03 4.90233704E�01
H3 8.806496088894205E�01� 7.856386228144123E�02i 4.56101991E�03 4.97964118E�01
M4 1.119270327813773E+00� 7.857174930976864E�02i 4.78081893E�03 5.03503722E�01
M5 2.611408373693735E�01� 8.131342844325426E�02i 1.78379792E�03 4.98610419E�01
M6 1.586385206396238E+00� 1.007539641039786E�01i 1.39266539E�03 4.98316560E�01
H4 8.146096367566973E�01� 1.151425349028340E�01i 5.56499281E�04 4.99587169E�01
M7 1.185284841512747E+00� 1.151568095767493E�01i 5.23460502E�04 5.00514546E�01
H5 4.241425509337592E�01� 1.157329716877219E�01i 1.54586542E�04 5.00027538E�01
M8 1.458633698750696E+00� 1.317390878688410E�01i 1.56676841E�04 4.99232741E�01
M9 1.242909183283527E+00� 1.416766573661299E�01i 4.56297556E�05 4.99511645E�01
H6 7.570767984466085E�01� 1.421161879182280E�01i 9.00978032E�05 4.99921265E�01
M10 5.535056462301901E�01� 1.480336176147290E�01i 1.97275844E�05 5.00041111E�01
H7 7.146880493720432E�01� 1.672076930561192E�01i 1.55075295E�05 4.99993207E�01
H8 1.350016062469853E+00� 1.673735247392610E�01i 3.47977667E�05 5.00434248E�01
M11 1.282552507495668E+00� 1.680275226645866E�01i 6.73127196E�06 4.99893504E�01
H9 6.629456892999758E�01� 1.891472124118232E�01i 4.32532510E�07 5.00026161E�01
H10 1.446494525623031E+00� 2.036556730959316E�01i 1.24814579E�06 5.00062076E�01
M12 5.528451368485648E�01� 2.049374394535060E�01i 2.96299729E�05 5.00329518E�01
M13 1.585986059452777E+00� 2.201268748513306E�01i 4.50785805E�07 5.00019975E�01
H11 4.140100085873281E�01� 2.202650660557717E�01i 6.23753285E�04 5.01168819E�01
M14 1.314169715851030E+00� 2.222089152181401E�01i 2.37334309E�06 5.00066617E�01
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X
sinhðHzz0Þ

S½dd1d2 �
uu ¼

S½dd1d2 �
H2

0
; channel problems;

S½dd1d2 �
H2

1
; film problems;

8<: X
sinhðHzz0Þ

S½dd1d2 �
bb ¼ S½dd1d2 �

H1 ; ðA:21Þ
where the matrix dimensions are, respectively, set to Nu � Nu and Nb � Nb, and the quadrature order G satisfies (A.16) for the
given Nu and Nb (see Table 1). The matrices C ½dd1d2 �

uu and C ½dd1d2 �
bb can be obtained in a similar manner.

The Nb � Nu matrices S½dd1d2 �
bu in (4.39c), and the corresponding C ½dd1d2 �

bu , are evaluated by means of a small modification of
the method described above. Specifically, setting G P dðpu þ pb þ 1� d1 � d2Þ=2e, where pu and pb are, respectively, the poly-
nomial degrees of the velocity and magnetic-field bases, we compute the G� Nu differentiation matrices
D½d�u

h i
kn
¼

bDd2 k½2�n ðn
½Hn �
G;k Þ; channel problems;bDd2mnðn½Hn �

G;k Þ; film problems;

8<: ~D½d�u


 �
kn ¼

bDd2 k½2�n ð�n½Hn �
G;k Þ; channel problems;bDd2mnð�n½Hn �

G;k Þ; film problem:

8<: ðA:22Þ
.7
x phase velocity, free-surface energy, and magnetic energy of the 50 least stable modes of film MHD flow for Re ¼ 104, Pm ¼ 1:2, Hz ¼ 100,
0= tanð1�Þ ¼ 5;729:0, a ¼ 1, and pu ¼ pb ¼ 500.

c Ea=E Eb=E

M1 5.730712527841059E�01+2.324448171471415E�01i 1.55368282E�03 6.27754503E�01
M2 9.999662794999503E�01+2.995447338075381E�03i 4.57204335E�01 5.40293709E�01
H1 2.473832776575761E+00� 6.668718635437071E�02i 2.18064501E�03 4.93024533E�01
H2 -4.719180988155635E�01� 7.423768906303792E�02i 1.73356878E�02 4.45603769E�01
M3 2.255965520302815E+00� 7.470417212775415E�02i 1.23471031E�03 4.96051404E�01
M4 1.839128034527613E+00� 8.415589460277167E�02i 1.58470555E�04 4.99758437E�01
H3 1.607425136440457E�01� 8.416545145469047E�02i 4.96144700E�04 4.98422034E�01
H4 -2.537388439002239E�01� 8.639457677027707E�02i 3.64319834E�04 4.99289800E�01
M5 2.104500776714310E+00� 1.062941298438939E�01i 1.93416056E�04 4.99260154E�01
H5 -9.594753680497503E�03� 1.154337552841804E�01i 1.04858430E�04 4.99709363E�01
H6 2.006732431538488E+00� 1.173991682216372E�01i 1.10061595E�05 5.00031553E�01
M6 -1.028994429723196E�01� 1.181599272927191E�01i 1.80435541E�05 5.00108919E�01
M7 1.992432247761956E+00� 1.428026346897175E�01i 3.06062921E�05 4.99957821E�01
H7 -1.486669990792075E�01� 1.546696130389129E�01i 1.32139198E�04 5.00216090E�01
H8 2.149914031936959E+00� 1.547451165427829E�01i 5.97183354E�06 5.00012678E�01
H9 1.497110637003433E�02� 1.554024803667328E�01i 1.17577752E�07 5.00056586E�01
M8 1.877105786467711E+00� 1.758494108501184E�01i 4.59851939E�04 4.99399002E�01
M9 2.265910230362226E+00� 1.814792094639965E�01i 1.01820455E�06 5.00000546E�01
H10 -2.660625867993014E�01� 1.817664723304037E�01i 6.75852599E�04 4.99503447E�01
M10 1.286455845657033E�01� 1.869955428705588E�01i 5.33488512E�10 5.00010050E�01
M11 1.777925033824834E+00� 2.032657926022689E�01i 1.24457592E�03 4.97438917E�01
H11 -3.689452236962003E�01� 2.081111355348598E�01i 2.35036438E�03 4.94965438E�01
H12 2.368988731798130E+00� 2.083066963980606E�01i 1.17719002E�07 4.99999951E�01
H13 2.289111896130953E�01� 2.151783504352822E�01i 1.71759635E�11 5.00001434E�01
H14 1.686856182617016E+00� 2.319856093442447E�01i 2.90422748E�03 4.95711947E�01
M12 2.464636214409749E+00� 2.376324476994128E�01i 1.03541576E�08 4.99999985E�01
M13 -4.648399462644413E�01� 2.379712743127836E�01i 3.56297361E�03 4.91469997E�01
H15 3.203751907254034E�01� 2.443767135237242E�01i 3.26397507E�12 5.00000201E�01
M14 2.545322529575427E+00� 2.510096024577790E�01i 1.11849326E�09 5.00000000E�01
M15 1.603274089291569E+00� 2.569347271243571E�01i 4.22994598E�03 4.96561678E�01
M16 -5.440592595635370E�01� 2.590426425774207E�01i 3.28827038E�03 4.92408636E�01
M17 1.553455334464779E+00� 2.660276104476013E�01i 4.88597282E�03 4.97627211E�01
H16 4.063333148651367E�01� 2.693141291552068E�01i 1.37693158E�11 5.00000022E�01
H17 4.434850816800840E�01� 2.719664469377049E�01i 6.52413692E�10 5.00000004E�01
M18 2.564920815859217E+00� 2.900278752014453E�01i 5.73141432E�10 4.99999997E�01
M19 -5.753960932274280E�01� 2.944274626768089E�01i 2.60937194E�03 4.94745095E�01
M20 1.521931299291029E+00� 3.266984145477413E�01i 4.12749876E�03 5.00285770E�01
H18 4.745739313682381E�01� 3.416793489999066E�01i 1.92708173E�10 5.00000025E�01
M21 2.605714975362244E+00� 3.582408866577410E�01i 5.46632465E�10 4.99999996E�01
M22 -6.161288412234787E�01� 3.608797452475898E�01i 1.81843985E�03 4.97522620E�01
M23 1.478377619017029E+00� 3.957613263651220E�01i 3.26477608E�03 5.02291637E�01
H19 5.151412240687655E�01� 4.118721901537905E�01i 3.83621453E�10 5.00000063E�01
H20 2.646798904301417E+00� 4.331273692492144E�01i 8.84648949E�10 4.99999994E�01
H21 -6.590141553005944E�01� 4.343365580968211E�01i 1.29732677E�03 4.99348274E�01
H22 7.337666281194658E�01� 4.511866839614843E�01i 2.27045953E�07 5.00000365E�01
M24 1.266226812423773E+00� 4.511871019387462E�01i 2.37720358E�03 5.04041443E�01
H23 1.438197567115054E+00� 4.758542533043695E�01i 2.25243588E�03 5.03110459E�01
H24 5.509378948979481E�01� 4.917174032110209E�01i 9.55750576E�10 5.00000209E�01
M25 -7.029317493633316E�01� 5.158193962272031E�01i 9.46117477E�04 5.00552549E�01
M26 2.688970523655919E+00� 5.159648399769025E�01i 1.41137944E�09 4.99999989E�01
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and the G� Nb matrices
Table B
Comple
Hx ¼ 0,

Pm ¼ 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
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21
22
23
24
25

Zero-Pm
1
2
3
4
5
6
7
8
9

10
11
12
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14
15
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19
20
21
22
23
24
25
D½d�b

h i
kn
¼ bDd1lnðn

½Hn �
G;k Þ; ~D½d�b

h i
kn
¼ bDdlnð�n½Hn �

G;k Þ: ðA:23Þ
Then, using (4.37), we obtain
S½dd1d2 �
bu ¼ coshðHzz0Þ

HzðcoshðHzÞ � 1Þ D½d1 �
b

� �T
q̂D½d2 �

u � ð�1Þd ~D½d1 �
b

� �T
q̂~D½d2 �

u

� �
; ðA:24Þ

C ½dd1d2 �
bu ¼ sinhðHzz0Þ

HzðcoshðHzÞ � 1Þ D½d1 �
b

� �T
q̂D½d2 �

u þ ð�1Þd ~D½d1 �
b

� �T
q̂~D½d2 �

u

� �
: ðA:25Þ
.8
x phase velocity, free-surface energy, and magnetic energy of the 25 least stable modes of Pm ¼ 10�4 and inductionless film problems for Re ¼ 106,
Hz ¼ 10, a ¼ 0:01, and pu ¼ pb ¼ 500.

c Ea=E Eb=E

0�4

P1 9.827740745781693E�01+1.378889017224996E�02i 7.24666495E�02 2.15275409E�01
P2 9.966318253386569E�01� 1.729496429383905E�02i 1.59797080E�03 6.39564264E�03
F 1.014166957371416E+00� 2.023153714484952E�02i 5.57768219E�02 2.02372335E�01
M 8.963942701536741E�01� 2.230611760108570E�02i 2.63630575E�03 2.81909875E�01
P3 9.924105404214866E�01� 2.791674437106779E�02i 1.38559159E�03 5.42539069E�03
P4 9.875152490898093E�01� 4.091267274188794E�02i 5.87758472E�04 2.43675858E�03
P5 9.821430271325844E�01� 5.598659375314297E�02i 2.16249214E�04 9.67767708E�04
P6 9.763393926684037E�01� 7.303710004539263E�02i 7.98063610E�05 3.87816863E�04
P7 9.701177041647411E�01� 9.198221086320833E�02i 3.04259434E�05 1.61283312E�04
P8 9.634914276532229E�01� 1.127435872610586E�01i 1.19987237E�05 7.11220612E�05
P9 9.564737663515980E�01� 1.352508002012170E�01i 4.86994878E�06 3.43414306E�05
A1 2.043752507918366E�01� 1.382155129440374E�01i 2.65512297E�05 6.76888392E�04
P10 9.490768922315087E�01� 1.594407513141479E�01i 2.02441746E�06 1.86828116E�05
P11 9.413059220244964E�01� 1.852666055336322E�01i 8.58949897E�07 1.15815671E�05
P12 9.331100288011960E�01� 2.126991990564922E�01i 3.71982482E�07 8.07319306E�06
P13 9.241628978169624E�01� 2.415995965738982E�01i 1.67469403E�07 6.18111799E�06
A2 5.485857229604332E�01� 2.543247432500674E�01i 2.04147463E�05 2.73274870E�04
S14 9.136144101655377E�01� 2.701419120983383E�01i 8.69573682E�08 5.13716045E�06
A3 7.584422887773197E�01� 2.936517141880773E�01i 2.35984013E�06 2.65866338E�05
S1 9.082386809421658E�01� 2.949546580869035E�01i 4.30262070E�08 4.41250950E�06
S2 9.091850895449860E�01� 3.278071002404340E�01i 1.25715603E�08 3.67249658E�06
S3 9.085887529467680E�01� 3.657495319309292E�01i 3.54474781E�09 3.15176864E�06
S4 9.075729159081490E�01� 4.061278829713209E�01i 1.03145994E�09 2.76414143E�06
S5 9.065902732598250E�01� 4.485775152605276E�01i 3.17798102E�10 2.45730081E�06
S6 9.057202010030883E�01� 4.929937569120063E�01i 1.11264271E�10 2.20552966E�06

F 1.003101591142454E+00� 3.566209451901286E�03i 6.72837196E�01
P1 9.962374896067492E�01� 8.490431959137465E�03i 2.86960937E�01
P2 9.954752741215225E�01� 1.799555622830871E�02i 1.87184382E�02
P3 9.914235412405336E�01� 2.854441538628768E�02i 4.20757181E�03
P4 9.867950949691461E�01� 4.138073423269108E�02i 1.11745489E�03
P5 9.816309500583722E�01� 5.636505634050717E�02i 3.37941565E�04
P6 9.759749178748121E�01� 7.336429599503635E�02i 1.12225419E�04
P7 9.698607234189339E�01� 9.227255368643117E�02i 3.99003465E�05
P8 9.633150965063083E�01� 1.130045327080768E�01i 1.49351784E�05
P9 9.563600504916626E�01� 1.354908022708811E�01i 5.81950598E�06
A1 2.040819501443709E�01� 1.368282959884726E�01i 2.67536481E�05
P10 9.490138010484565E�01� 1.596757198801955E�01i 2.34183587E�06
P11 9.412830024121032E�01� 1.855234700321759E�01i 9.67685268E�07
P12 9.331097433168207E�01� 2.130253538287424E�01i 4.09828377E�07
P13 9.241307150561545E�01� 2.420975318808301E�01i 1.80926843E�07
A2 5.472994989764256E�01� 2.566280536271839E�01i 2.04118433E�05
S14 9.130639995318163E�01� 2.709666500322817E�01i 9.39797217E�08
A3 7.599241262067515E�01� 2.925041261915177E�01i 2.53535655E�06
S1 9.073118177084314E�01� 2.946601432216078E�01i 4.89499023E�08
S2 9.090167794351164E�01� 3.275242239233893E�01i 1.37035468E�08
S3 9.085298949915235E�01� 3.656433241650778E�01i 3.78997484E�09
S4 9.075427223945008E�01� 4.060870766395542E�01i 1.09158459E�09
S5 9.065734348086940E�01� 4.485622188838805E�01i 3.33940266E�10
S6 9.057105331285589E�01� 4.929883938135048E�01i 1.16277597E�10
S7 9.049563954076344E�01� 5.393404672114830E�01i 5.13232899E�11
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Remark 16. Mach’s algorithm [39] for the an and bn coefficients (with n 2 f0;1;2; . . . ;Gþ 1gÞ of polynomials orthogonal
with respect to the weight function eHnn consists of two parts. For n 6 G0 :¼ minf½Hn�;Gþ 1g the coefficients are evaluated
algebraically, while if Gþ 1 > ½Hn� an iterative procedure is used for n > G0. We observed that for the typical Hn and G used in
our linear-stability schemes (both of which are significantly larger than the ones considered in Mach’s paper), the quadrature
knots n½Hn �

G;k and weights q̂½Hn �
G;k , which follow from the eigenvalues and eigenvectors of the Jacobian matrix J constructed from

fang and fbng [56], are more accurately computed if the iterative procedure is employed for all n. Moreover, using a
specialized solver for symmetric tridiagonal matrices (e.g. the LAPACK routine DSTEV [53]), rather than a generic one,
enhances the stability of the computation for large G. Regarding the algorithm’s large-Hn behavior, in 64-bit arithmetic the
weight calculation overflows at around Hn ¼ 700. This limitation can be mitigated by increasing the arithmetic precision, but
doing so is significantly more complicated than in the case of the LGL method (see Remark 12), as it involves porting the
routines for the J eigenproblem.
Appendix B. Eigenvalues of selected film and channel problems

This appendix contains tables of eigenvalues for the stability problems studied in Section 5.1. In each case, the eigenprob-
lem (4.3) has been solved using the QZ algorithm, and the resulting complex phase velocity c ¼ ic=a is listed in order of
decreasing ImðcÞ. In the examples where the spectrum exhibits the A, P, and S branches (Tables B.1–B.5 and B.8) the modes
are also labeled in order of decreasing ImðcÞ within their respective families. In Tables B.6 and B.7, hydrodynamic and mag-
netic modes are respectively labeled H and M. In addition to c, Tables B.2 and Tables B.6–B.8 also display the modal energies
(2.15). All problems with Hz > 0 (Tables B.3, B.4 and Tables B.6–B.8) have the Hartmann profiles (2.12). In these cases, the
stiffness matrix K has been computed by means of the exact-quadrature method (Eqs. (4.40) and (4.41)), aside from the
inductionless problems in Table B.3, where LGL quadrature (4.42a) has also been used. The free-surface parameters are
Ga ¼ 8:3� 107 and Ca ¼ 0:07 for all film problems.
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